首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a modified Holling–Tanner predator–prey model is analyzed, considering important aspects describing the interaction such as the predator growth function is of a logistic type; a weak Allee effect acting in the prey growth function, and the functional response is of hyperbolic type. Making a change of variables and time rescaling, we obtain a polynomial differential equations system topologically equivalent to the original one in which the non‐hyperbolic equilibrium point (0,0) is an attractor for all parameter values. An important consequence of this property is the existence of a separatrix curve dividing the behavior of trajectories in the phase plane, and the system exhibits the bistability phenomenon, because the trajectories can have different ω ? limit sets; as example, the origin (0,0) or a stable limit cycle surrounding an unstable positive equilibrium point. We show that, under certain parameter conditions, a positive equilibrium may undergo saddle‐node, Hopf, and Bogdanov–Takens bifurcations; the existence of a homoclinic curve on the phase plane is also proved, which breaks in an unstable limit cycle. Some simulations to reinforce our results are also shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Since intraguild predation (IGP) is a ubiquitous and important community module in nature and Allee effect has strong impact on population dynamics, in this paper we propose a three-species IGP food web model consisted of the IG predator, IG prey and basal prey, in which the basal prey follows a logistic growth with strong Allee effect. We investigate the local and global dynamics of the model with emphasis on the impact of strong Allee effect. First, positivity and boundedness of solutions are studied. Then existence and stability of the boundary and interior equilibria are presented and the Hopf bifurcation curve at an interior equilibrium is given. The existence of a Hopf bifurcation curve indicates that if competition between the IG prey and IG predator for the basal resource lies below the curve then the interior equilibrium remains stable, while if it lies above the curve then the interior equilibrium loses its stability. In order to explore the impact of Allee effect, the parameter space is classified into sixteen different regions and, in each region, the number of interior equilibria is determined and the corresponding bifurcation diagrams on the Allee threshold are given. The extinction parameter regions of at least one species and the necessary coexistence parameter regions of all three species are provided. In addition, we explore possible dynamical patterns, i.e., the existence of multiple attractors. By theoretical analysis and numerical simulations, we show that the model can have one (i.e. extinction of all species), two (i.e. bi-stability) or three (i.e. tri-stability) attractors. It is also found by simulations that when there exists a unique stable interior equilibrium, the model may generate multiple attracting periodic orbits and the coexistence of all three species is enhanced as the competition between the IG prey and IG predator for the basal resource is close to the Hopf bifurcation curve from below. Our results indicate that the intraguild predation food web model exhibits rich and complex dynamic behaviors and strong Allee effect in the basal prey increases the extinction risk of not only the basal prey but also the IG prey or/and IG predator.  相似文献   

3.
In this paper, the Allee effect is incorporated into a predator–prey model with Holling type II functional response. Compared with the predator–prey model without Allee effect, we find that the Allee effect of prey species increases the extinction risk of both predators and prey. When the handling time of predators is relatively short and the Allee effect of prey species becomes strong, both predators and prey may become extinct. Moreover, it is shown that the model with Allee effect undergoes the Hopf bifurcation and heteroclinic bifurcation. The Allee effect of prey species can lead to unstable periodical oscillation. It is also found that the positive equilibrium of the model could change from stable to unstable, and then to stable when the strength of Allee effect or the handling time of predators increases continuously from zero, that is, the model admits stability switches as a parameter changes. When the Allee effect of prey species becomes strong, longer handling time of predators may stabilize the coexistent steady state.  相似文献   

4.
In this paper, we discuss a predator–prey model with the Beddington–DeAngelis functional response of predators and a disease in the prey species. At first we study permanence and global stability of a positive equilibrium for the deterministic version of the model. Then we include a stochastic perturbation of the white noise type. We analyse the influence of this stochastic perturbation on the systems and prove that the positive equilibrium is also globally asymptotically stable in this case. The key point of our analysis is to choose appropriate Lyapunov functionals. We point out the differences between the deterministic and stochastic versions of the model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is devoted to investigation of Holling type II predator–prey systems with prey refuges and predator restricts. Using a transformation technique, we change the system into a generalized Liénard system and give sufficient conditions to ensure the global stability of the positive equilibrium and existence and uniqueness of a stable limit cycle. We also find the property of alternation for phase structure of the system.  相似文献   

6.
In this paper, complex dynamics of the discrete predator–prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark–Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark–Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour.  相似文献   

7.
In this paper, we present a stability analysis of a Lotka-Volterra commensal symbiosis model subject to Allee effect on the unaffected population which occurs at low population density. By analyzing the Jacobian matrix about the positive equilibrium, we show that the positive equilibrium is locally asymptotically stable. By applying the differential inequality theory, we show that the system is permanent, consequently, the boundary equilibria of the system is unstable. Finally, by using the Dulac criterion, we show that the positive equilibrium is globally stable. Although Allee effect has no influence on the final densities of the predator and prey species, numeric simulations show that the system subject to an Allee effect takes much longer time to reach its stable steady-state solution, in this sense that Allee effect has unstable effect on the system, however, such an effect is controllable. Such an finding is greatly different to that of the predator-prey model.  相似文献   

8.
Functional response of the Holling type II is incorporated into a predator–prey model with predators using hawk‐dove tactics to consider combination effects of nonlinear functional response and individual tactics. By mathematical analysis, it is shown that the model undergoes a sequence of bifurcations including saddle‐node bifurcation, supercritical Hopf bifurcation and homoclinic bifurcation. New phenomena are found that include the bistable coexistence of prey and predators in the form of a stable limit cycle and a stable positive equilibrium, the bistable coexistence of prey and predators in a large stable limit cycle that encloses three positive equilibria and a stable positive equilibrium within the cycle, and the bistable coexistence of two stable limit cycles.  相似文献   

9.
This work deals with the analysis of a predator–prey model derived from the Leslie–Gower type model, where the most common mathematical form to express the Allee effect in the prey growth function is considered.  相似文献   

10.
The Bogdanov‐Takens bifurcations of a Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting were studied. In the paper “Diff. Equ. Dyn. Syst. 20(2012), 339‐366,” Gupta et al proved that the Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting has rich dynamics. Some equilibria of codimension 1 and their bifurcations were discussed. In this paper, we find that the model has an equilibrium of codimensions 2 and 3. We also prove analytically that the model undergoes Bogdanov‐Takens bifurcations (cusp cases) of codimensions 2 and 3. Hence, the model can have 2 limit cycles, coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1 as the values of parameters vary. Moreover, several numerical simulations are conducted to illustrate the validity of our results.  相似文献   

11.
In this paper, stability and bifurcation of a two‐dimensional ratio‐dependence predator–prey model has been studied in the close first quadrant . It is proved that the model undergoes a period‐doubling bifurcation in a small neighborhood of a boundary equilibrium and moreover, Neimark–Sacker bifurcation occurs at a unique positive equilibrium. We study the Neimark–Sacker bifurcation at unique positive equilibrium by choosing b as a bifurcation parameter. Some numerical simulations are presented to illustrate theocratical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
13.
We study pattern formations in a predator–prey model with prey‐taxis. It is proved that a branch of nonconstant solutions can bifurcate from the positive equilibrium only when the chemotactic is repulsive. Furthermore, we find the stable bifurcating solutions near the bifurcation point under suitable conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we investigate the impact of strong Allee effect on the stability of a discrete-time predator–prey model with a non-monotonic functional response. The dynamics of discrete-time predator–prey models with strong Allee effect is studied earlier. But, the mathematical investigations of predator–prey dynamics in discrete-time set up with Holling type-IV functional response and strong Allee effect in prey are lacking. The proposed model supports the coexistence of two steady states, and the mathematical features of the model are analyzed based on local stability and bifurcation theory. By considering the Allee parameter as the bifurcation parameter, we provide sufficient conditions for the flip and the Neimark–Sacker bifurcations. We observe that Allee parameter plays a significant role in the dynamics of the system.  相似文献   

15.
The paper explores an eco-epidemiological model with weak Allee in predator, and the disease in the prey population. We consider a predator-prey model with type II functional response. The curiosity of this paper is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We perform the local and global stability analysis of the equilibrium points and the Hopf bifurcation analysis around the endemic equilibrium point. Further we pay attention to the chaotic dynamics which is produced by disease. Our numerical simulations reveal that the three species eco-epidemiological system without weak-Allee induced chaos from stable focus for increasing the force of infection, whereas in the presence of the weak-Allee effect, it exhibits stable solution. We conclude that chaotic dynamics can be controlled by the Allee parameter as well as the competition coefficients. We apply basic tools of non-linear dynamics such as Poincare section and maximum Lyapunov exponent to identify chaotic behavior of the system.  相似文献   

16.
We study the problem of the existence of limit cycles for a generalized Gause-type predator–prey model with functional and numerical responses that satisfy some general assumptions. These assumptions describe the effect of prey density on the consumption and reproduction rates of predator. The model is analyzed for the situation in which the conversion efficiency of prey into new predators increases as prey abundance increases. A necessary and sufficient condition for the existence of limit cycles is given. It is shown that the existence of a limit cycle is equivalent to the instability of the unique positive critical point of the model. The results can be applied to the analysis of many models appearing in the ecological literature for predator–prey systems. Some ecological models are given to illustrate the results.  相似文献   

17.
The consumer–resource relationships are among the most fundamental of all ecological relationships and have been the focus of ecology since its beginnings. Usually are described by nonlinear differential equation systems, putting the emphasis in the effect of antipredator behavior (APB) by the prey; nevertheless, a minor quantity of articles has considered the social behavior of predators. In this work, two predator–prey models derived from the Volterra model are analyzed, in which the equation of predators is modified considering cooperation or collaboration among predators. It is well known that competition among predators produces a stabilizing effect on system describing the model, since there exists a wide set in the parameter space where the system has a unique equilibrium point in the phase plane, which is globally asymptotically stable. Meanwhile, the cooperation can originate more complex and unusual dynamics. As we will show, it is possible to prove that for certain subset of parameter values the predator population sizes tend to infinite when the prey population goes to extinct. This apparently contradicts the idea of a realistic model, when it is implicitly assumed that the predators are specialist, ie, the prey is its unique source of food. However, this could be a desirable effect when the prey constitutes a plague. To reinforce the analytical result, numerical simulations are presented.  相似文献   

18.
In this paper we consider a predator–prey system which has a factor that allows for a reduction in fitness due to declining population sizes, often termed an Allee effect. We study the influence of the weak Allee effect which is included in the prey equation and we determine conditions for the occurrence of Hopf bifurcation. The prey population is limited by the carrying capacity of the environment, and the predator growth rate depends on past quantities of the prey which is represented by a weight function that specifies a moment in the past when the quantity of food is the most important from the point of view of the present growth of the predator. The stability properties of the system and the biological issues of the memory and Allee effect on the coexistence of the two species are studied. Finally we present some simulations to verify the veracity of the analytical conclusions.  相似文献   

19.
In this paper, we discuss the qualitative behavior of a discrete host‐parasitoid model with the host subject to refuge and strong Allee effects. More precisely, we study the local and global asymptotic stability, stable manifolds and unstable manifolds of boundary equilibrium points, existence and unique positive equilibrium point, local and global behavior of the positive equilibrium point, and the uniform persistence for the model with the host subject to the refuge or both refuge and strong Allee effects. It is also proved that the model undergoes a transcritical bifurcation in a small neighborhood of the boundary equilibrium point. Some numerical simulations are given to support our theoretical results. We can obtain that the addition of the refuge may make the parasitoids go extinct while the hosts survive or may stabilize the host‐parasitoid interaction; the addition of both refuge and strong Allee effects has either a negative or positive impact on the coexistence of both populations.  相似文献   

20.
The present paper deals with the problem of a classical predator–prey system with infection of prey population. A classical predator–prey system is split into three groups, namely susceptible prey, infected prey and predator. The relative removal rate of the susceptible prey due to infection is worked out. We observe the dynamical behaviour of this system around each of the equilibria and point out the exchange of stability. It is shown that local asymptotic stability of the system around the positive interior equilibrium ensures its global asymptotic stability. We prove that there is always a Hopf bifurcation for increasing transmission rate. To substantiate the analytical findings, numerical experiments have been carried out for hypothetical set of parameter values. Our analysis shows that there is a threshold level of infection below which all the three species will persist and above which the disease will be epidemic. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号