首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
《Tetrahedron: Asymmetry》1999,10(16):3117-3122
The stereoselective acylation of meso piperidines 3a,b by vinyl acetate (solvent and acyl donor) in the presence of Candida antarctica lipase gave the corresponding (2S,6R) and (2S,4R,6R) monoesters 2a,b in high enantiomeric purity. (5S,9S)-(+)-Indolizidine 209D was prepared in eight steps from (2S,6R)-2a.  相似文献   

2.
Owendi Ongayi 《Tetrahedron》2010,66(1):63-6115
The structure of the ring-opened product from direct oxidation of meso-tetra-arylporphyrins has been controversial for three decades. Herein we show that bilitrienones 2 are obtained from oxidation of metal-free dodecasubstituted porphyrins 1 in the presence of sodium nitrite, trifluoroacetic acid, and air oxygen. The presence of the para-nonyl groups in 1b stabilized the corresponding bilitrienone 2b, which was characterized by X-ray crystallography. In the absence of the para-nonyl groups bilitrienone 2a undergoes a rapid hydration reaction, giving biladienone 3a as the major isolated product. The molecular structures of 2b and 3a, and the photochemical isomerization of 3a are discussed.  相似文献   

3.
《Polyhedron》1999,18(20):2665-2671
The reaction of [PtCl2(dppe)] [dppe=1,2-bis(diphenylphosphino)ethane] with two equivalents of the thioureas NHRC(S)NHR (R=H, Me, Et) in the presence of NH4PF6 led to substitution of both chlorides and formation of the complexes [Pt(dppe){SC(NHR)2}2](PF6)2 (1a, R=H; 1b, R=Me; 1c, R=Et). In contrast, the reaction of [PtCl2(dppe)] with one equivalent of the potentially bidentate thiosemicarbazides NHRC(S)NHNR′2 (R=Me, R′=H; R=Et, R′=H; R=Ph, R′=H; R=Me, R′=Me) in the presence of NH4PF6 led to substitution of only one chloride and formation of the complexes [PtCl(dppe){SC(NHR)NHNR2′-S}](PF6) (2a, R=Me, R′=H; 2b, R=Et, R′=H; 2c, R=Ph, R′=H; 2d, R=Me, R′=Me). An X-ray analysis of complex 2d revealed that an intramolecular N–H⋯Cl hydrogen bond [N(2)⋯Cl(1)=3.29(2) Å] helps to stabilise the monodentate co-ordination mode. The chloride ligand can be abstracted from complex 2d by treatment with TlPF6, and this reaction led to formation of [Pt(dppe){SC(NHMe)NHNMe2-S,N}](PF6)2 3d. Reaction of [PtCl2(dppe)] with unsubstituted thiosemicarbazide NH2C(S)NHNH2 in the presence of NH4PF6 resulted in a mixture of products containing mono- and bidentate co-ordinated ligands, [PtCl(dppe){SC(NH2)NHNH2-S}](PF6) 2e and [Pt(dppe){SC(NH2)NHNH2-S,N}](PF6)2 3e. [PtCl2(dppe)] also reacts with two equivalents of NHMeC(S)NHNMe2 in the presence of NH4PF6 to yield [Pt(dppe){SC(NHMe)NHNMe2-S}2](PF6)2 1d, in which the thiosemicarbazide is acting as an S-donor, directly analogous to the thiourea ligands in complexes 1a–c.  相似文献   

4.
M. Nara  S. Terashima  S. Yamada 《Tetrahedron》1980,36(22):3161-3170
With an aim to overcome several inefficient aspects of ordinary methods of preparing optically active compounds, we have developed a new method which recommends utilization of symmetrically functionalized meso-compounds in place of racemic compounds.As shown in Scheme 1, when the mesa-compound (I) is monofunctionalized by an optically active functional group (A) and each of the formed diastereomers (II and III) is subjected to further chemical elaborations including protective group transposition, it is theoretically possible to convert the total amount of the starting material (I) into the requisite optically pure product (VI or VII) by selecting synthetic schemes.By employing this novel concept, two structural types of the prostaglandin intermediates ((?)- and ( + )-2a,b) have been prepared from the meso-diols (1a, b) by way of the two diastereomeric monoesters (13a, b and 14a, b) which are produced by the reactions of 1a, b with N-mesyl- and N-phthaloyl-(S)-phenylalanyl chloride (3a, b).  相似文献   

5.
《Tetrahedron: Asymmetry》2006,17(16):2377-2385
Separation of diastereomeric and enantiomeric mixtures of 2,2′-[1,2- and 1,3-phenylenebis(oxy)]dicyclohexanols rac-3a and meso-3a, and rac-3b and meso-3b—resulting from the reactions of pyrocatechol 1a and resorcinol 1b with cyclohexene oxide 2—were performed using acetylation catalyzed by the highly stereoselective Candida antarctica lipase B (Novozym 435). The absolute configurations of the resulting diols (S,S,S,S)-3a,b, monoacetates (R,R,S,S)-4a,b and diacetates (R,R,R,R)-5a,b were assigned on the basis of the steric analogy to the acetylation of racemic trans-2-phenoxycyclohexanol rac-6 with the same enzyme resulting in the known acetate (−)-(R,R)-7.  相似文献   

6.
The reaction of RHN(CH2)3NHR (1a,b) (a, R=2,6-iPr2C6H3; b, R=2,6-Me2C6H3) with 2 equiv of BuLi followed by 2 equiv of ClSiMe3 yields the silylated diamines R(Me3Si)N(CH2)3N(SiMe3)R (3a,b). The reaction of 3a,b with TiCl4 yields the dichloride complexes [RN(CH2)3NR]TiCl2 (4a,b) and two equiv of ClSiMe3. An X-ray study of 4a (P21/n, a=9.771(1) Å, b=14.189(1) Å, c=21.081(2) Å, β=96.27(1)°, V=2905.2(5) Å3, Z=4, T=25°C, R=0.0701, Rw=0.1495) revealed a distorted tetrahedral geometry about titanium with the aryl groups lying perpendicular to the TiN2-plane. Compounds 4a,b react with 2 equiv of MeMgBr to give the dimethyl derivatives [RN(CH2)3NR]TiMe2 (5a,b). An X-ray study of 5b (P212121, a=8.0955(10) Å, b=15.288(4) Å, c=16.909(3) Å, V=2092.8(7) Å3, Z=4, T=23°C, R=0.0759, Rw=0.1458) again revealed a distorted tetrahedral geometry about titanium with titanium–methyl bond lengths of 2.100(9) Å and 2.077(9) Å. These titanium dimethyl complexes are active catalysts for the polymerization of 1-hexene, when activated with methylaluminoxane (MAO). Activities up to 350,000 g of poly(1-hexene)/mmol catalyst·h were obtained in neat 1-hexene. These systems actively engage in chain transfer to aluminum. Equimolar amounts of 5a or 5b and B(C6F5)3 catalyze the living aspecific polymerization 1-hexene. Polydispersities (Mw/Mn) as low as 1.05 were measured. Highly active living systems are obtained when 5a is activated with {Ph3C}+[B(C6F5)4]. A primary insertion mode (1,2 insertion) has been assigned based on both the initiation of the polymer chain and its purposeful termination with iodine.  相似文献   

7.
Bis(acetylides) and bis(diacetylides) of ruthenium(II), trans-Ru(CO)2(PEt3)2(CCR)2 (1) (1a, R  Ph; 1b, R  tBu; 1c, R  SiMe3; 1d, R  H) and trans-Ru(CO)2(PEt3)2(CCC CR)2 (2) (2a, R  SiMe3; 2b, R  H) have been synthesized and characterised. The first single crystal X-ray analyses of these all trans-acetylides have revealed linear C2RuC2 chains in 1a and 1d.  相似文献   

8.
The cathodic reduction of the trihalophosphane complexes (CO)5CrPX3 (1a, X = Cl; 1b, X = Br) leads to the binuclear complexes (CO)5 Cr(X2PPX2)Cr(CO)5, (2a, X = Cl; 2b, X = Br). Reductive dehalogenation of coordinated organodihalophosphanes, (CO)5CrPRX2 (3a, R = Me, X = Cl; 3b, R = Ph, X = Cl; 3c, R = Me, X = Br; 3d, R = Ph, X = Br), in the presence of dimethyldisulfane yields bis(methylthio)organophosphane complexes, (CO)5CrPR(SCH3)2 (5a, R = Me; 5b, R = Ph). The phosphinidene complexes (CO)5 CrPR are discussed as the reactive intermediates.The organodibromophosphane complexes 3c and 3d can also be partially reduced in the presence of dimethyldisulfane, and (CO)5CrPBrR(SCH3) (7a, R = Me; 7b, R = Ph) is obtained. Radical intermediates are probable.  相似文献   

9.
Mononuclear complexes of the type, M(CO)4[Se2P(OR)2] (M = Mn, R = iPr, 1a; Et, 1b; M = Re, R = iPr, 3a; Et, 3b) can be prepared from either [-Se(Se)P(OiPr)2]2 (A) or [Se{-Se(Se)P(OEt)2}2] (B) with M(CO)5Br. O,O′-dialkyl diselenophosphate ([(RO)2PSe2]-, abbreviated as dsep) ligands generated from A and B act as a chelating ligand in these complexes. Upon refluxing in acetonitrile, these mononuclear complexes yield dinuclear complexes with a general formula of [M2(CO)6{Se2P(OR)2}2] (M = Mn, R = iPr, 2a; Et, 2b; M = Re, R = iPr, 4a; Et, 4b). Dsep ligands display a triconnective, bimetallic bonding mode in the dinuclear compounds and this kind of connective pattern has never been identified in any phosphor-1,1-diselenoato metal complexes. Compounds 2b, 3b, and 4 are structurally characterized. Compounds 2b and 3b display weak, secondary Se?Se interactions in their lattices.  相似文献   

10.
Bo-Yuan Shiu 《Tetrahedron》2008,64(27):6221-6229
Several cobalt-containing bulky monodentate phosphines (μ-PPh2CH2PPh2)Co2(CO)4(μ,η-(tBu)2PCC(C6H4R)) (4a: R=H; 4b: R=p-F; 4cp: R=p-CF3; 4cm: R=m-CF3; 4d: R=p-OMe) were prepared from the reactions of (tBu)2PCC(R-C6H4) (2a: R=H; 2b: R=p-F; 2cp: R=p-CF3; 2cm: R=m-CF3; 2d: R=p-OMe) with Co2(CO)6(μ-PPh2CH2PPh2) 3. Further reactions of 4a, 4b, 4cp, 4cm, and 4d with Pd(OAc)2 yielded unique palladium complexes (μ-PPh2CH2PPh2)Co2(CO)4(μ,η-(tBu)2PCC(C6H3R)-κC1)Pd(μ-OAc) (5a: R=H; 5b: R=p-F; 5cp: R=p-CF3; 5cm: R=m-CF3; 5d: R=p-OMe, respectively). The strong electron-withdrawing substituents, -F and -CF3, assist the ortho-metalation process during the formation of 5b, 5cp, and 5cm. The more positively charged palladium center in 5b (or 5cp, 5cm) enhances the probability for PhB(OH)3 to attack the metal center and the rate of reduction thereafter. DFT studies on the charges of these palladium centers support this assumption. The enhancement of the reaction rates of the Suzuki-Miyaura cross-coupling reactions using 5b, 5cp, and 5cm is thereby attributed to this effect.  相似文献   

11.
《Polyhedron》1999,18(23):3057-3064
The synthesis of new cyclometalated compounds of palladium(II) with the mixed-donor bidentate ligands o-Ph2PC6H4–CH=NR is described. Two series of complexes [Pd(C^N)(o-Ph2PC6H4–CH=NR)][PF6] have been prepared using either azobenzene or 2-phenylpyridine as cyclometalated ligands [C^N=azobenzene (azb); R=Me (1a), Et (2a), nPr (3a), iPr (4a), tBu (5a), Ph (6a), NH–Me (7a); C^N=2-phenylpyridine (phpy); R=Me (1b), Et (2b), nPr (3b), iPr (4b), tBu (5b), Ph (6b), NH–Me (7b)]. The new complexes were characterized by partial elemental analyses and spectroscopic methods (IR, FAB, 1H and 31P NMR). The molecular structures of compounds 2a (monoclinic, P 21/n) and 1b (monoclinic, C 2/c) have been determined by a single-crystal diffraction study. In both cases this technique revealed the relative trans configuration between the phosphorus atom and the nitrogen atom of the ortho-metalated ligand.  相似文献   

12.
The synthesis of the organovanadium(V) oxide (η5-C5H5)VOCl2 (2a) from the low-valent precursor compound (η5-C5H5)V(CO)4 (1a) has been applied to the permethylated derivative of composition (η5-C5Me5VOCl2 (2b). Exchange of bromine for chlorine in oxodichlorides 2a and 2b is effected by boron tribromide, yielding the oxodibromide derivatives of composition (η5-C5R5)VOBr2 (R = H, 3a; R = CH3, 3b). The methoxy derivatives 4a and 4b are synthesized directly from the dichloro precursors 2a and 2b, respectively, by treatment with a slight excess of sodium methoxide. Diarylvanadium(V) compounds (η5-C5R)VOX2 (e.g., R = CH3, X = C6H5; 5b), are obtained from 2a,2b via the Grignard route. 51V NMR spectroscopy is an easy and powerful method of detecting novel organic vanadium oxides since the chemical shifts vary greatly even with small changes in the ligands attached to the metal.  相似文献   

13.
(η-Cyclopentadienyl)(triphenylphosphine)cobaltacyclopentadienes having an electron withdrawing substituent on the cyclopentadienyl ring, (η-C5H4R)(PPh3)(CoCHCHCH) (1b: R = COOMe; 1c: R = COMe), were prepared in reasonable yields by treatment of a solution of (η-C5H4R)(PPh3)2Co with acetylene. A non-substituted cyclopentadienyl analog (1a: R = H) was also isolated in low yield according to a similar procedure. Novel dinuclear complexes were also formed as by-products and the structure of (η-C5H4R)Co(PPh2C6H4)(μ-CMe)Co(η-C5H4R) (2b: R = COOMe), having a μ23-benzyl moiety, was determined by an X-ray crystallographic analysis. The X-ray analyses of 1a and 1b were also carried out. Crystals of 1a are monoclinic, space group Pa, a 8.529(3), b 16.010(6), c 8.028(4) Å, β 100.31(3)°, Z = 2; crystals of 1b are monoclinic, space group P21/a, a 8.327(2), b 36.468(7), c 8.021(1) Å, β 98.75(2)°, Z = 4; and crystals of 2b are monoclinic, space group P21/c, a 10.681(2), b 30.722(7), c 8.912(1) Å, β 93.55(1)°, Z = 4. They have been refined to R = 0.034, 0.047 and 0.050, respectively.  相似文献   

14.
The keto-functionalised N-pyrrolyl phosphine ligand PPh2NC4H3{C(O)CH3-2} L1 reacts with [MoCl(CO)35-C5R5)] (R=H, Me) to give [MoCl(CO)2(L11P)(η5-C5R5)] (R=H 1a; Me 1b). The phosphine ligands PPh2CH2C(O)Ph (L2) and PPh2CH2C(O)NPh2 (L3) react with [MoCl(CO)35-C5R5)] in an analogous manner to give the compounds [MoCl(CO)2(L-κ1P)(η5-C5R5)] (L=L2, R=H 2a, Me 2b; L=L3, R=H 3a, Me 3b). Compounds 13 react with AgBF4 to give [Mo(CO)2(L-κ2P,O)(η5-C5R5)]BF4 (L=L1, R=H 4a, Me 4b; L=L2, R=H 5a, Me 5b; L=L3, R=H 6a, Me 6b) following displacement of chloride. The X-ray crystal structure of 4a revealed a lengthening of both Mo–P and CO bonds on co-ordination of the keto group. The lability of the co-ordinated keto or amido group has been assessed by addition of a range of phosphines to compounds 46. Compound 4a reacts with PMe3, PMe2Ph and PMePh2 to give [Mo(CO)2(L11P)(L)(η5-C5H5)]BF4 (L=PMe3 7a; PMe2Ph 7b; PMePh2 7c) but does not react with PPh3, 5a reacts with PMe2Ph, PMePh2 and PPh3 to give [Mo(CO)2(L21P)(L)(η5-C5H5)]BF4 (L=PMe2Ph 8b; PMePh2 8c; PPh3 8d), and 6a reacts with PMe3, PMe2Ph, PMePh2 and PPh3 to give [Mo(CO)2(L31P)(L)(η5-C5H5)]BF4 (L=PMe3 10a; PMe2Ph 10b; PMePh2 10c; PPh3 10d). No reaction was observed for the pentamethylcyclopentadienyl compounds 4b6b with PMe3, PMe2Ph, PMePh2 or PPh3. These results are consistent with the displacement of the co-ordinated oxygen atom being influenced by the steric properties of the P,O-ligand, with PPh3 displacing the keto group from L2 but not from the bulkier L1. In the reaction of [Mo(CO)2(L22P,O)(η5-C5H5)]BF4 (5a) with PMe3 the phosphine does not displace the keto group, instead it acts as a base, with the only observed molybdenum-containing product being the enolate compound [Mo(CO)2{PPh2CHC(O)Ph-κ2P,O}(η5-C5H5)] 9. Compound 9 can also be formed from the reaction of 2a with BuLi or NEt3, and a single crystal X-ray analysis has confirmed the enolate structure.  相似文献   

15.
Tetraamminecobalt hydrogen hexamolybdoferrate [Co(NH3)4] · H[FeMo6O18(OH)6] · 6H2O (I) and tetraamminecobalt hydrogen hexamolybdogallate(III) [Co(NH3)4] · H[GaMo6O18(OH)6] · 6H2O (II) were synthesized and studied by mass spectrometry, thermogravimetry, IR spectroscopy, and X-ray diffraction. Crystals of I and II are monoclinic; a = 16.21 Å, b = 5.43 Å, c = 12.32 Å, β = 119.63°, V = 1092.11 Å3, ρcalcd = 2.21 g/cm3, and Z = 1 for I; a = 16.24 Å, b = 5.59 Å, c = 12.29 Å, β = 119.79°, V = 1064.05 Å3, ρcalcd = 2.15 g/cm3, and Z = 1 for II. Compounds I and II were used as catalysts for soft oxidation of natural gas.  相似文献   

16.
《Comptes Rendus Chimie》2003,6(2):209-222
The synthesis of the iron allenylidene complexes [(η5-C5Me5)(η2-dppe)Fe(=C=C=C(Ph)Ph)][X] (5a, X = PF6, 95%; 5b, X = BPh4, 91%; dppe = 1,2-bis(diphenylphosphino)ethane) was achieved by reacting the complex (η5-C5Me5)(η2-dppe)FeCl (10) with 1 equiv of 1,1-diphenyl-prop-2-yn-1-ol in methanol in the presence of KPF6 or NaBPh4. Surprisingly, when the reaction was carried out in the presence of the tetraphenylborate anion, the final product contained both 5b and the hydroxyvinylidene [(η5-C5Me5)(η2-dppe)Fe(=C=C(H)C(OH)(Ph)2)][BPh4] (14b) in the 1:1 ratio. Further treatment of the mixture with Amberlyst 15 in methanol provided the allenylidene 5b as a pure sample. The allenylidene complexes [(η5-C5Me5)(η2-dppe)Fe(=C=C=C(Me)Ph)][PF6] (6) and [(η5-C5Me5)(η2-dppe)Fe(=C=C=C(Me)Et)][PF6] (7) were prepared according to the same procedure and they were isolated as purple powders in 90% yield. The X-ray crystal structures were determined for the vinylidene complexes [(η5-C5Me5)(η2-dppe)Fe(=C=CH2)][PF6] (3) and [(η5-C5Me5)(η2-dppe)Fe(=C=C(Ph)H)][PF6] (4), and the allenylidene derivative 5a. In the homogeneous series of complexes [(η5-C5Me5)(η2-dppe)Fe(=(C)n(R)R’)][PF6], (n = 1, R = H, R′ = Me, X = PF6, 1; n =1, R = H, R’ = OMe, X = PF6, 2a; n = 1, R = H, R’ = OMe, X = CF3OSO2, 2b; n = 2, R = R′ = H, X = PF6, 3; n = 2, R = H, R′ = Ph, X = PF6, 4; n = 3, R = R′ = Ph, X = PF6, 5a; n = 3, R = R′ = Ph, X = BPh4, 5b; n = 3, R = Me, R′ = Ph, X = PF6, 6; n = 3, R = Me, R′ = Et, X = PF6, 7; n = 3, R = Me, R′ = OMe, X = BPh4, 8), an empiric relationship between the Mössbauer parameters, δ and QS, was found. This observation would indicate that the positive charge on the iron nucleus decreases with the Fe=C bond order. Moreover, in this series of iron cumulenylidene derivatives, comparison of the variation of the metal–carbon bond distances determined by X-ray analyses with the Mössbauer QS values allows the observation of a linear correlation (R = 0.99). To cite this article: G. Argouarch et al., C. R. Chimie 6 (2003).  相似文献   

17.
Indium catecholate complexes 3,6-CatInR (3,6-Cat is the 3,6-di-tert-butyl-o-benzoquinone dianion (3,6-Q), R = Me (I) and Et (II)) are synthesized by the exchange reaction between RInI2 and thallium catecholate 3,6-CatTl2. Compounds I and II are trimeric in both the solution and crystalline state. The oxidation of compound I and earlier described complex [3,6-CatInI(THF)]2 (THF is tetrahydrofuran) by various substrates (iodine, 3,6-Q, and tetramethylthiuram disulfide) is studied. Different indium(III) o-semiquinone complexes are the reaction products, depending on the reaction conditions.  相似文献   

18.
A terminally coordinated CO ligand in the complexes [Fe2{μ-CN(Me)R}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; R = Xyl, 1b; Xyl = 2,6-Me2C6H3), is readily displaced by primary and secondary amines (L), in the presence of Me3NO, affording the complexes [Fe2{μ-CN(Me)R}(μ-CO)(CO)(L)(Cp)2][SO3CF3] (R = Me, L = NH2Et, 4a; R = Xyl, L = NH2Et, 4b; R = Me, L = NH2Pri, 5a; R = Xyl, L = NH2Pri, 5b; R = Xyl, L = NH2C6H11, 6; R = Xyl, L = NH2Ph, 7; R = Xyl, L = NH3, 8; R = Me, L = NHMe2, 9a; R = Xyl, L = NHMe2, 9b; R = Xyl, = NH(CH2)5, 10). In the absence of Me3NO, NH2Et gives addition at the CO ligand of 1b, yielding [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(O)NHEt}(Cp)2] (11). Carbonyl replacement is also observed in the reaction of 1a-b with pyridine and benzophenone imine, affording [Fe2{μ-CN(Me)R}(μ-CO)(CO)(L)(Cp)2][SO3CF3] (R = Me, L = Py, 12a; R = Xyl, L = Py, 12b; R = Me, L = HNCPh2, 13a; R = Xyl, L = HNCPh2, 13b). The imino complex 13b reacts with p-tolylacetylide leading to the formation of the μ-vinylidene-diaminocarbene compound [Fe2{μ-η12- CC(Tol)C(Ph)2N(H)CN(Me)(Xyl){(μ-CO)(CO)(Cp2)] (15) which has been studied by X-ray diffraction.  相似文献   

19.
The first order rate constants for the tautomerization of the hydrio(alkynyl) clusters Ru3Pt(μ-H){μ42-C ≡ C1Bu}(CO)9(L2);1a: L2 = dppe,1b; L2 = dppet,1c; L2 = dppp and1d; L2 =S,S-dppb to the corresponding vinylidene clusters Ru3Pt{μ42-C = C(H)tBu}(CO)9(L2)2 have been measured, and they follow the orser1d <1a <1b1c. The reactions involving1a and1d exhibit an inverse kinetic deuterium isotope effect. The structures of1b, 2b, 2c, and2d were determined by X-ray crystallography, and are compared with those of1a and2a which have been previously reported. Crystal data for1b, space groupPbca,a = 13.338(4) Å,b = 17.771(6) Å,c = 36.092(8) Å,Z = 8,R(R w) = 0.059(0.058) for 2342 absorption corrected, observed data; for2b, space group P21/n,a = 10.566(2) Å,b = 20.234(5) Å,c = 20.270(3) Å,β = 96.11(1)°,Z = 4,R(R w) = 0.043(0.053) for 5865 absorption corrected, observed data; for2c, space group P21/n,a = 14.211(5) Å,b = 19.534(2) Å,c = 15.870(2) Å,β = 100.81(2)°,Z = 4,R(R w) = 0.055(0.031) for 6566 absorption corrected, observed data: for2d, space group P212121,a = 12.309(4) Å,b = 19.047(6) Å,c = 19.206(4) Å,Z = 4,R(R w) = 0.055(0.053) fpr 2151 absorption corrected, observed data. The fluxional behavior of1d and1e (which consists of two interconverting isomers) has been examined by variable temperature13C NMR spectroscopy and by31P EXSY.  相似文献   

20.
Treatment of platinum(II) diamine [Pt(N,N-DimeTm)Cl2] (I) with pyridine gave tetramine [Pt(N,N-DimeTm)Py2]Cl2 (II); by oxidation with chlorine this was converted to Pt(IV) triamine, [Pt“(N,N-DimeTm(Py)Cl3]Cl (III) with a six-membered chelate ring. According to X-ray diffraction data, the reaction of complex II with chlorine is accompanied by removal of the pyridine molecule from the trans-position to the NH2 group of N,N-dimethyltrimethylenediamine. The reaction of complex III with chlorine at 20°C afforded a mixture of compounds (IV) and the complex [Pt“(CH3)2N(CH2)2C(O)NH”(Py)Cl3] (V) with an amidate six-membered metal ring, dimethylpropioamide, which was also isolated upon refluxing a mixture of IV in an aqueous solution. The UV/Vis and IR spectra of the obtained complexes were studied, and X-ray diffraction analysis of I, III, and V was performed. The crystals of I are triclinic, space group P $ \bar 1 $ ; a = 7.6526(4) Å, b = 11.5571(6) Å, c = 12.4432(7) Å, α = 113.85(1)°, β = 96.54(2)°, γ = 106.78(2)°; Z = 4; R hkl = 0.051. The crystals of III are monoclinic, space group C2/c; a = 36.715(2) Å, b = 7.8179(4) Å, c = 29.721(16) Å, β = 127.80(1)°; Z = 16; R hkl = 0.036. The crystals of V are monoclinic, space group P21/n; a = 7.0398(6) Å, b = 27.458(2) Å, c = 7.687(6) Å, β = 106.270(1)°; Z = 4; R hkl = 0.052.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号