首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A high intensity dual beam X-ray system was designed and constructed to make chordal-average void fraction measurements. This X-ray system employed a DC excited tube filament, full wave rectification and high voltage filtering to produce a stable photon source. The large photon flux produced by the X-ray system allowed analog linearization of the signal.A series of chordal-average void fraction measurements were made and used to generate probability density functions (PDF) and power spectral density (PSD) functions. The first four moments associated with these distributions were studied as possible flow regime indicators.The moments of the PDF indicated the various flow regime transitions. The moments of the PSD also show some flow regime transition information, but were sensitive to liquid phase velocity. The PDF variance, or second moment about the mean, was found to be the best indicator of flow regime. A variance of 0.04 appear to adequately discriminate between the bubbly, slug and annular flow regimes for low pressure air/water flow in a 2.54 cm I.D. vertical tube.  相似文献   

2.
Flow pattern, void fraction and slug rise velocity on counter-current two-phase flow in a vertical round tube with wire-coil inserts are experimentally studied. Flow pattern and slug rise velocity are measured visually with a video camera. The void fraction is measured by the quick-closing valve method. Four kinds of coils with different coil pitches and coil diameters are used as inserts. The presence of wire-coil inserts induces disturbance into gas and liquid flows so that the shape and motion of gas slug or bubbles in a wire-coil inserted tube are quite different from those observed in a smooth tube without insert. The bubbly flow occurs in the low gas superficial velocity region in the wire-coil inserted tube, while the slug or churn/annular flow only appears in the smooth tube without insert over the all test range. The measured slug rise velocity in the wire-coil inserted tube is higher than that in the smooth tube. With modified mean flow velocity calculated with core area, the slug rise velocity in wire-coil tube inserted is in good agreement with Nicklin's correlation. The void fraction in a wire-coil inserted tube is lower than that in a smooth tube in the range of high gas superficial velocities. By introducing a simple assumption on considering the effective flowing area, the measured void fractions in a wire-coil inserted tube are in relatively good agreement with the predicted result based on the drift flux model proposed by others with the correlation for slug rise velocity given by others when the coil pitch is dense.  相似文献   

3.
The concurrent upward two-phase flow of air and water in a long vertical large diameter pipe with an inner diameter (D) of 200 mm and a height (z) of 26 m (z/D = 130) was investigated experimentally at low superficial liquid velocities from 0.05009 to 0.3121 m/s and the superficial gas velocities from 0.01779 to 0.5069 m/s. The resultant void fractions range from 0.03579 to 0.4059. According to the observations using a high speed video camera, the flow regimes of bubbly, developing cap bubbly and fully-developed cap bubbly flows prevailed in the flows. The developing cap bubbly flow appeared as a flow regime transition from bubbly to fully-developed cap bubble flow in the vertical large diameter pipe. The developing cap bubbly flow changes gradually and lasts for a long time period and a wide axial region in the flow direction, in contrast to a sudden transition from bubbly to slug flows in a small diameter pipe. The analysis in this study showed that the flow regime transition depends not only on the void fraction but also on the axial distance in the flow and the pipe diameter. The axial flow development brings about the transition to happen in a lower void fraction flow and the increase of pipe diameter causes the transition to happen in a higher void fraction flow. The measured void fraction showed an N-shaped axial changing manner that the void fraction increases monotonously with axial position in the bubbly flow, decreases non-monotonously with axial position in the developing cap bubbly flow, and increases monotonously again with axial position in the fully-developed cap bubbly flow. The temporary void fraction decrease phenomenon in the transition region from bubbly to cap bubbly flow can be attributed to the formation of medium to large cap bubbles and their gradual growth into the maximum size of cap bubble and/or cluster of large cap bubbles in the developing cap bubbly flow. In order to predict the N-shaped axial void fraction changing behaviors in the flow regime transition from bubbly to cap bubbly flow, the existing 12 drift flux correlation sets for large diameter pipes are reviewed and their predictabilities are studied against the present experimental data. Although some drift flux correlation sets, such as those of Clark and Flemmer (1986) and Hibiki and Ishii (2003), can predict the present experimental data with reasonable average relative deviations, no drift flux correlation set for distribution parameter and drift velocity can give a reliable prediction for the observed N-shaped axial void fraction changing behaviors in the region from bubbly to cap bubbly flow in a vertical large diameter pipe.  相似文献   

4.
The flow boiling patterns of liquid nitrogen in a vertical mini-tube with an inner diameter of 1.931 mm are visualized with a high-speed digital camera. The superficial gas and liquid velocities are in the ranges of 0.01–26.5 m/s and 0.01–1.2 m/s, respectively. Four typical flow patterns, namely, bubbly, slug, churn and annular flow are observed. Some interesting scenes about the entrainment and liquid droplet deposition in the churn and annular flow, and the flow reversal with the indication of negative pressure drop, are also presented. Based on the visualization, the two-phase flow regime maps are obtained. Compared with the flow regime maps for gas–water flow in tubes with similar hydraulic diameters, the region of slug flow in the present study reduces significantly. Correspondingly, the transition boundary from the bubbly flow to slug flow shifts to higher superficial gas velocity, and that of churn to annular flow moves to lower superficial gas velocity. Moreover, time-averaged void fraction is calculated by quantitative image-digitizing technique and compared with various prediction models. Finally, three kinds of oscillations with long-period and large-amplitude are found, possible explanation for the oscillations is given by comparing the instantaneous flow images with the data of pressure, mass flux and temperature recorded synchronously.  相似文献   

5.
This paper presents the results of the flow boiling patterns and heat transfer coefficients of FC-72 in a small tube. The internal diameter of the tube is 0.48 mm, with a heated length of 73 mm. The mass flow rate varies from 50 to 3,000 kg/m2-s. The microtube is made of Pyrex in order to obtain the visualisation of the flow pattern along the heated channel. Different types of flow pattern have been observed: bubbly flow, deformed bubbly flow, bubbly/slug flow, slug flow, slug/annular flow, and annular flow. The experiments show the presence of flow instabilities in a large portion of the tests at low mass flow rates and low subcooling. Flow patterns in presence of flow instabilities are mainly characterized by bubbly/slug flow and slug/annular flow. Heat transfer rates have been studied in all flow pattern conditions. The two groups of results, with flow instabilities and without flow instabilities, show similar heat transfer behaviour. The heat transfer characteristics of the pipes have been studied in comparison with mass flux and vapour quality.  相似文献   

6.
Instantaneous readouts of an electrical resistivity probe are taken in an upward vertical air–water mixture. The signals are further processed to render the statistical moments and the probability density functions here used as objective flow pattern indicators. A series of 73 experimental runs have its flow pattern identified by visual inspection assisted by the analyses of the void fraction’s trace and associated probability density function. The flow patterns are classified into six groups and labeled as: bubbly, spherical cap, slug, unstable slug, semi-annular and annular. This work compares and analyzes the performance of artificial neural networks, ANN, and expert systems to flow pattern identification. The employed ANNs are Multiple Layer Perceptrons, Radial Basis Functions and Probabilistic Neural Network, with single and multiple outputs. The performance is gauged by the percentage of right identifications based on experimental observation. The analysis is extended to clustering algorithms to assist the formation of knowledge base employed during the learning stages of the ANNs and expert systems. The performance of the following clustering algorithms: self organized maps, K-means and Fuzzy C-means are also tested against experimental data.  相似文献   

7.
Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air–water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi plate is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454–457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil–air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601–606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%.  相似文献   

8.
Study of two-phase flows in reduced gravity using ground based experiments   总被引:1,自引:0,他引:1  
Experimental studies have been carried out to support the development of a framework of the two-fluid model along with an interfacial area transport equation applicable to reduced gravity two-phase flows. The experimental study simulates the reduced gravity condition in ground based facilities by using two immiscible liquids of similar density namely, water as the continuous phase and Therminol 59® as the dispersed phase. We have acquired a total of eleven data sets in the bubbly flow and bubbly to slug flow transition regimes. These flow conditions have area-averaged void (volume) fractions ranging from 3 to 30% and channel Reynolds number for the continuous phase between 2,900 and 8,800. Flow visualization has been performed and a flow regime map developed which is compared with relevant bubbly to slug flow regime transition criteria. The comparison shows that the transition boundary is well predicted by the criterion based on critical void fraction. The value of the critical void fraction at transition was experimentally determined to be approximately 25%. In addition, important two-phase flow local parameters, including the void fraction, interfacial area concentration, droplet number frequency and droplet velocity, have been acquired at two axial locations using state-of-the-art multi-sensor conductivity probe. The radial profiles and axial development of the two-phase flow parameters show that the coalescence mechanism is enhanced by either increasing the continuous or dispersed phase Reynolds number. Evidence of turbulence induced particle interaction mechanism is highlighted. The data presented in this paper clearly show the marked differences in terms of bubble (droplet) size, phase distribution and phase interaction in two-phase flow between normal and reduced gravity conditions.  相似文献   

9.
10.
The damping of tubes subjected to two-phase air–water bubbly cross-flow is investigated with the use of an experimental database from several authors. A new definition of damping in stagnant flow is proposed using an extrapolation of the measured values at low dimensionless flow velocities. This approach yields values of damping substantially lower than those currently defined in the literature. They are found to vary continuously with void fraction, within the bubbly flow regime. These data are used to compare several models of the equivalent viscosity of a two-phase mixture. The effect of the flow velocity is then analysed up to fluidelastic instability. It is observed that, using scaling factors based on the characteristics of the liquid phase, fluidelastic effects of bubbly flows are closely related to those known in single-phase flows.  相似文献   

11.
Measurements of the cross-sectional distribution of the gas fraction and bubble size distributions were conducted in a vertical pipe with an inner diameter of 51.2 mm and a length of about 3 m for air/water bubbly and slug flow regimes. The use of a wire-mesh sensor obtained a high resolution of the gas fraction data in space as well as in time. From this data, time averaged values for the two-dimensional gas fraction profiles were decomposed into a large number of bubble size classes. This allowed the extraction of the radial gas fraction profiles for a given range of bubble sizes as well as data for local bubble size distributions. The structure of the flow can be characterized by such data. The measurements were performed for up to 10 different inlet lengths and for about 100 combinations of gas and liquid volume flow rates. The data is very useful for the development and validation of meso-scale models to account for the forces acting on a bubble in a shear liquid flow and models for bubble coalescence and break-up. Such models are necessary for the validation of CFD codes for the simulation of bubbly flows.  相似文献   

12.
In order to investigate the potential seismic vibrations effect on two-phase flow in an annular channel, experimental tests with air-water two-phase flow under horizontal vibrations were carried out. A low-speed eccentric-cam vibration module capable of operating at motor speed of 45–1200 rpm (f = 0.75–20 Hz) was attached to an annular channel, which was scaled down from a prototypic BWR fuel sub-channel with inner and outer diameters of 19.1 mm and 38.1 mm, respectively. The two-phase flow was operated in the ranges of 〈jf〉 = 0.25–1.00 m/s and 〈jg〉 = 0.03–1.46 m/s with 27 flow conditions, and the vibration amplitudes controlled by cam eccentricity (E) were designed for the range of 0.8–22.2 mm. Ring-type impedance void meters were utilized to detect the area-averaged time-averaged void fraction under stationary and vibration conditions. A systematic experimental database was built and analyzed with effective maps in terms of flow conditions (〈jg〉-〈jf〉) and vibration conditions (E-f and f-a), and the potential effects were expressed by regions on the maps. In the 〈jg〉-〈jf〉 maps, the void fraction was found to potentially decrease under vibrations in bubbly flow regime and relatively lower liquid flow conditions, which may be explained by the increase of distribution parameter. Whereas and the void fraction may increase at the region closed to bubbly-to-slug transition boundary under vibrations, which may be explained by the changes of drift velocity due to flow regime change from bubbly to slug flows. No significant change in void fraction was found in slug flow regime under the present test conditions.  相似文献   

13.
This paper presents a robust image processing technique for bubbly flow measurement over a wide range of void fractions. The proposed algorithm combines geometrical, optical and topological information recorded with high speed cameras to separate and reconstruct the overlapping bubbles. The common difficulties such as overlapping, irregular bubble shape, surface deformation and large clustering in digital image processing are solved by combining different information based on a preset decision table and flow chart. Test with synthetic bubble images is performed to evaluate the reliability of the algorithm and quantify the uncertainty of the data. The result shows that the proposed algorithm can accurately measure bubbly flows with void fraction up to 18% for large bubbles. Four runs of bubbly flow images in a 30 mm  ×  10 mm rectangular channel are then recorded by three high speed cameras. The area-averaged void fraction of these test runs range from 2.4% to 9.1%. The axial and lateral distributions of bubble number density are obtained by the present algorithm for studying the characteristics of these flows.  相似文献   

14.
The phase structure of vertical air-water mixture flows through venturis were investigated using area contraction ratios of 3.16 and 7.11 and with variations in angles of convergence and divergence. The flow conditions were predominantly of the bubbly type and covered a range of gas volume fraction at the throat between 0.2 and 0.6 for average mixture velocities of up 32 m/s. Resistivity probe signals indicating void fluctuations were analyzed to yield local void fraction, bubble velocity, bubble detection rate and probability density function of bubble sizes in the flow. Velocity ratios were also obtained to provide information on the overall behaviour of the two concurrent phases. The resistivity probe was shown to give reliable results for bubble flows in a wide range of speeds indicating velocity ratios up to 1.7 in the venturi throat. All flows tended toward a stable and well-mixed bubbly pattern downstream of the venturi exit following a sufficient length. The void and velocity profiles here always appeared to be characterized by a local maximum in the pipe centre, the local maximum close to the wall of some of the inlet flows being eliminated. Bubble coalescence was noted in the convergent passage whilst significant bubble fragmentation in the divergent passage was observed from the results.  相似文献   

15.
We performed laboratory experiments on bubbly channel flows using silicone oil, which has a low surface tension and clean interface to bubbles, as a test fluid to evaluate the wall shear stress modification for different regimes of bubble migration status. The channel Reynolds numbers of the flow ranged from 1000 to 5000, covering laminar, transition and turbulent flow regimes. The bubble deformation and swarms were classified as packing, film, foam, dispersed, and stretched states based on visualization of bubbles as a bulk void fraction changed. In the dispersed and film states, the wall shear stress reduced by 9% from that in the single-phase condition; by contrast, the wall shear stress increased in the stretched, packing, and foam states. We carried out statistical analysis of the time-series of the wall shear stress in the transition and turbulent-flow regimes. Variations of the PDF of the shear stress and the higher order moments in the statistic indicated that the injection of bubbles generated pseudo-turbulence in the transition regime and suppressed drag-inducing events in the turbulent regime. Bubble images and measurements of shear stress revealed a correlated wave with a time lag, for which we discuss associated to the bubble dynamics and effective viscosity of the bubble mixture in wall proximity.  相似文献   

16.
Miniaturized four-sensor conductivity probes are used to study flow structure development in air-water bubbly flow, cap-bubbly flow, and transition to slug flow. The measurements are performed at three different elevations in a vertical round pipe with an inner diameter of 101.6 mm. The time-averaged local void fraction, interfacial velocity, and bubble number frequency are measured by the conductivity probes. Also, the interfacial area concentration and averaged bubble Sauter mean diameter are obtained. A detailed representation of the flow structure is revealed by investigating the acquired data. Furthermore, comparisons of the data at three elevations demonstrate the development of the interfacial structure along the flow direction due to bubble interactions and hydrodynamic effects. This may provide the community with a better knowledge about two-phase flow in a relatively large pipe. In addition, these data can also serve as an experimental database for investigation of the interfacial area transport in large-pipe two-phase flow. Published online: 19 November 2002 This work was performed under the auspices of the U.S. Nuclear Regulatory Commission through the Institute of Thermal-hydraulics.  相似文献   

17.
The interfacial area concentration is one of the most important parameters in analyzing two-phase flow based on the two-fluid model. The local instantaneous formulation of the interfacial area concentration is introduced here. Based on this formulation, time and spatial averaged interfacial area concentrations are derived, and the local ergodic theorem (the equivalency of the time and spatial averaged values) is obtained for stationary developed two-phase flow. On the other hand, the global ergodic theorem is derived for general two-phase flow. Measurement methods are discussed in detail in relation to the present analysis. The three-probe method, with which local interfacial area concentration can be measured accurately, has been proposed. The one-probe method under some statistical assumptions has also been proposed. In collaboration with the experimental data for the interfacial velocity, radial profiles of the local interfacial area concentration are obtained based on the one-probe method. The result indicates that the local interfacial area concentration has a peak value near the tube wall in bubbly flow. This is consistent with the near wall peak of local void fraction separately observed. In slug flow it shows a higher value in the central region of the tube for that particular set of data.  相似文献   

18.
Despite the importance of air–oil slug flows to many industrial applications, their available data reported in the literature are limited compared to air–water slug flows. The main objective of the present study is to explain how air–oil slug flow parameters can be experimentally investigated using hot-film anemometry, capacitance sensors and image processing. Experiments were performed using air–oil slug flow through a horizontal pipe for air superficial velocities ranged from 0.01 m/s to 0.65 m/s and oil superficial velocities ranged from 0.03 m/s to 2.3 m/s. The signal obtained from the hot-film anemometer was used to determine the time-averaged local void fraction and liquid velocity and turbulence intensity for air–oil slug flow. The capacitance signals along with the data obtained by image processing of the flow were used to determine the elongated bubble length and velocity. The measurements techniques used found to describe in detail the internal structure of the slug flow. Finally, the experimental results were compared to existing models and correlations.  相似文献   

19.
In a companion paper, a simple analytical formulation has been established which provides the wall shear stress in laminar bubbly flows for idealised transverse void fraction distributions. In the present paper, this approach is applied to Poiseuille bubbly flows in circular ducts. New measurements of the void fraction profiles and wall friction angular distribution in a pipe are presented for a wide range of flow parameters. Approximating the void profiles by step-functions allows us to evaluate the wall friction with the above mentioned model. Results are shown to agree satisfactorily with measurements. Notably, negative wall shear stress and wall shear stress much higher than their single-phase flow counterpart at the same liquid flow rate are recovered. Therefore, the principal mechanisms responsible for friction modification are captured with this simple model.  相似文献   

20.
In view of the great importance of two geometrical parameters such as void fraction and interfacial area concentration to the accurate two-phase flow analysis at microgravity conditions, axial developments of flow parameters such as void fraction, interfacial area concentration, bubble Sauter mean diameter, and bubble number density were measured in bubbly flow at microgravity and low liquid Reynolds number conditions where the gravity effect on the flow parameters were pronounced. A total of seven data sets were acquired in the flow range of the void fraction from 1.01% to 3.36% and the liquid Reynolds number from 1,400 to 4,750. The measurements were also performed in the similar flow range at normal gravity conditions. The transport mechanisms of the flow parameters are discussed in detail based on the data measured at normal and microgravity conditions, and the drift-flux model developed at microgravity conditions are compared with the measured data.An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号