首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, we consider a three dimensional quantum Navier‐Stokes‐Poisson equations. Existence of global weak solutions is obtained, and convergence toward the classical solution of the incompressible Navier‐Stokes equation is rigorously proven for well prepared initial data. Furthermore, the associated convergence rates are also obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The semi‐iterative method (SIM) is applied to the hyper‐power (HP) iteration, and necessary and sufficient conditions are given for the convergence of the semi‐iterative–hyper‐power (SIM–HP) iteration. The root convergence rate is computed for both the HP and SIM–HP methods, and the quotient convergence rate is given for the HP iteration. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Stable finite difference approximations of convection‐diffusion equations lead to large sparse linear systems of equations whose coefficient matrix is an M‐matrix, which is highly non‐symmetric when the convection dominates. For an efficient iterative solution of such systems, it is proposed to consider in the non‐symmetric case an algebraic multilevel preconditioning method formerly proposed for pure diffusion problems, and for which theoretical results prove grid independent convergence in this context. These results are supplemented here by a Fourier analysis that applies to constant coefficient problems with periodic boundary conditions whenever using an ‘idealized’ version of the two‐level preconditioner. Within this setting, it is proved that any eigenvalue λ of the preconditioned system satisfies for some real constant c such that . This result holds independently of the grid size and uniformly with respect to the ratio between convection and diffusion. Extensive numerical experiments are conducted to assess the convergence of practical two‐ and multi‐level schemes. These experiments, which include problems with highly variable and rotating convective flow, indicate that the convergence is grid independent. It deteriorates moderately as the convection becomes increasingly dominating, but the convergence factor remains uniformly bounded. This conclusion is supported for both uniform and some non‐uniform (stretched) grids. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
We present a parallel matrix‐free implicit finite volume scheme for the solution of unsteady three‐dimensional advection‐diffusion‐reaction equations with smooth and Dirac‐Delta source terms. The scheme is formally second order in space and a Newton–Krylov method is employed for the appearing nonlinear systems in the implicit time integration. The matrix‐vector product required is hardcoded without any approximations, obtaining a matrix‐free method that needs little storage and is well‐suited for parallel implementation. We describe the matrix‐free implementation of the method in detail and give numerical evidence of its second‐order convergence in the presence of smooth source terms. For nonsmooth source terms, the convergence order drops to one half. Furthermore, we demonstrate the method's applicability for the long‐time simulation of calcium flow in heart cells and show its parallel scaling. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq31: 143–167, 2015  相似文献   

5.
R. Vanselow 《PAMM》2002,1(1):498-499
The paper is devoted to the convergence analysis of a well‐known cell‐centered Finite Volume Method (FVM) for a convection‐diffusion‐problem in R2.  相似文献   

6.
We study a linear model of McKendrick‐von Foerster‐Keyfitz type for the temporal development of the age structure of a two‐sex human population. For the underlying system of partial integro‐differential equations, we exploit the semigroup theory to show the classical well‐posedness and asymptotic stability in a Hilbert space framework under appropriate conditions on the age‐specific mortality and fertility moduli. Finally, we propose an implicit finite difference scheme to numerically solve this problem and prove its convergence under minimal regularity assumptions. A real data application is also given. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 706–736, 2016  相似文献   

7.
In this paper, we consider the mark and cell (MAC) method for Darcy‐Stokes‐Brinkman equations and analyze the stability and convergence of the method on nonuniform grids. Firstly, to obtain the stability for both velocity and pressure, we establish the discrete inf‐sup condition. Then we introduce an auxiliary function depending on the velocity and discretizing parameters to analyze the super‐convergence. Finally, we obtain the second‐order convergence in L2 norm for both velocity and pressure for the MAC scheme, when the perturbation parameter ? is not approaching 0. We also obtain the second‐order convergence for some terms of ∥·∥? norm of the velocity, and the other terms of ∥·∥? norm are second‐order convergence on uniform grid. Numerical experiments are carried out to verify the theoretical results.  相似文献   

8.
A second‐order finite difference/pseudospectral scheme is proposed for numerical approximation of multi‐term time fractional diffusion‐wave equation with Neumann boundary conditions. The scheme is based upon the weighted and shifted Grünwald difference operators approximation of the time fractional calculus and Gauss‐Lobatto‐Legendre‐Birkhoff (GLLB) pseudospectral method for spatial discretization. The unconditionally stability and convergence of the scheme are rigorously proved. Numerical examples are carried out to verify theoretical results.  相似文献   

9.
We present a method to prove convergence of gradient flows of families of energies that Γ‐converge to a limiting energy. It provides lower‐bound criteria to obtain the convergence that correspond to a sort of C1‐order Γ‐convergence of functionals. We then apply this method to establish the limiting dynamical law of a finite number of vortices for the heat flow of the Ginzburg‐Landau energy in dimension 2, retrieving in a different way the existing results for the case without magnetic field and obtaining new results for the case with magnetic field. © 2004 Wiley Periodicals, Inc.  相似文献   

10.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

11.
In this paper, we employ local Fourier analysis (LFA) to analyze the convergence properties of multigrid methods for higher‐order finite‐element approximations to the Laplacian problem. We find that the classical LFA smoothing factor, where the coarse‐grid correction is assumed to be an ideal operator that annihilates the low‐frequency error components and leaves the high‐frequency components unchanged, fails to accurately predict the observed multigrid performance and, consequently, cannot be a reliable analysis tool to give good performance estimates of the two‐grid convergence factor. While two‐grid LFA still offers a reliable prediction, it leads to more complex symbols that are cumbersome to use to optimize parameters of the relaxation scheme, as is often needed for complex problems. For the purposes of this analytical optimization as well as to have simple predictive analysis, we propose a modification that is “between” two‐grid LFA and smoothing analysis, which yields reasonable predictions to help choose correct damping parameters for relaxation. This exploration may help us better understand multigrid performance for higher‐order finite element discretizations, including for Q2Q1 (Taylor‐Hood) elements for the Stokes equations. Finally, we present two‐grid and multigrid experiments, where the corrected parameter choice is shown to yield significant improvements in the resulting two‐grid and multigrid convergence factors.  相似文献   

12.
We propose and analyze a Crank–Nicolson quadrature Petrov–Galerkin (CNQPG) ‐spline method for solving semi‐linear second‐order hyperbolic initial‐boundary value problems. We prove second‐order convergence in time and optimal order H2 norm convergence in space for the CNQPG scheme that requires only linear algebraic solvers. We demonstrate numerically optimal order Hk, k = 0,1,2, norm convergence of the scheme for some test problems with smooth and nonsmooth nonlinearities. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

13.
In this paper, we introduce and study new type Szász‐Mirakyan‐Kantorovich operators using a technique different from classical one. This allow to analyze the mentioned operators in terms of exponential test functions instead of the usual polynomial type functions. As a first result, we prove Korovkin type approximation theorems through exponential weighted convergence. The rate of convergence of the operators is obtained for exponential weights.  相似文献   

14.
We analyze the convergence of a continuous interior penalty (CIP) method for a singularly perturbed fourth‐order elliptic problem on a layer‐adapted mesh. On this anisotropic mesh, we prove under reasonable assumptions uniform convergence of almost order k ? 1 for finite elements of degree k ≥ 2. This result is of better order than the known robust result on standard meshes. A by‐product of our analysis is an analytic lower bound for the penalty of the symmetric CIP method. Finally, our convergence result is verified numerically. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 838–861, 2014  相似文献   

15.
A generalized skew‐Hermitian triangular splitting iteration method is presented for solving non‐Hermitian linear systems with strong skew‐Hermitian parts. We study the convergence of the generalized skew‐Hermitian triangular splitting iteration methods for non‐Hermitian positive definite linear systems, as well as spectrum distribution of the preconditioned matrix with respect to the preconditioner induced from the generalized skew‐Hermitian triangular splitting. Then the generalized skew‐Hermitian triangular splitting iteration method is applied to non‐Hermitian positive semidefinite saddle‐point linear systems, and we prove its convergence under suitable restrictions on the iteration parameters. By specially choosing the values of the iteration parameters, we obtain a few of the existing iteration methods in the literature. Numerical results show that the generalized skew‐Hermitian triangular splitting iteration methods are effective for solving non‐Hermitian saddle‐point linear systems with strong skew‐Hermitian parts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper is devoted to the study of a third‐order Newton‐type method. The method is free of bilinear operators, which constitutes the main limitation of the classical third‐order iterative schemes. First, a global convergence theorem in the real case is presented. Second, a semilocal convergence theorem and some examples are analyzed, including quadratic equations and integral equations. Finally, an approximation using divided differences is proposed and used for the approximation of boundary‐value problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
In this article, we propose a Cucker–Smale‐type self‐propelled particle model with continuous non‐Lipschitz protocol. We show that the flocking can occur in finite time if the communication rate function satisfies a lower bound condition. Both our theoretical and numerical results uncover a power‐law relationship between the convergence time and the number of individuals. Our result implies that the individuals in groups with high density can transit rapidly to ordered collective motion. We also investigate the influence of control parameter on the convergence speed. © 2015 Wiley Periodicals, Inc. Complexity 21: 354–361, 2016  相似文献   

18.
A numerical method for the analysis of fluid‐structure interaction in the areas of building aeroelasticity and building‐water interaction is presented. In order to achieve optimal convergence of the solution a consistent space‐time discretization and a strong coupling algorithm is applied to the highly nonlinear problem.  相似文献   

19.
We propose and analyze an application of a fully discrete C2 spline quadrature Petrov‐Galerkin method for spatial discretization of semi‐linear parabolic initial‐boundary value problems on rectangular domains. We prove second order in time and optimal order H1 norm convergence in space for the extrapolated Crank‐Nicolson quadrature Petrov‐Galerkin scheme. We demonstrate numerically both L2 and H1 norm optimal order convergence of the scheme even if the nonlinear source term is not smooth. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

20.
One‐dimensional adaptive Fourier decomposition, abbreviated as 1‐D AFD, or AFD, is an adaptive representation of a physically realizable signal into a linear combination of parameterized Szegö and higher‐order Szegö kernels of the context. In the present paper, we study multi‐dimensional AFDs based on multivariate complex Hardy spaces theory. We proceed with two approaches of which one uses Product‐TM Systems; and the other uses Product‐Szegö Dictionaries. With the Product‐TM Systems approach, we prove that at each selection of a pair of parameters, the maximal energy may be attained, and, accordingly, we prove the convergence. With the Product‐Szegö dictionary approach, we show that pure greedy algorithm is applicable. We next introduce a new type of greedy algorithm, called Pre‐orthogonal Greedy Algorithm (P‐OGA). We prove its convergence and convergence rate estimation, allowing a weak‐type version of P‐OGA as well. The convergence rate estimation of the proposed P‐OGA evidences its advantage over orthogonal greedy algorithm (OGA). In the last part, we analyze P‐OGA in depth and introduce the concept P‐OGA‐Induced Complete Dictionary, abbreviated as Complete Dictionary. We show that with the Complete Dictionary P‐OGA is applicable to the Hardy H2 space on 2‐torus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号