首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Applying Green's continuum theory of a slender body, the process of liquid jet break-up is analysed for a viscoelastic upper-convected Jeffreys fluid. In contrast to a Newtonian liquid an enforced growth of the perturbation is received from a linear analysis. A non-linear numerical analysis shows the viscosity-dependent filament formation between growing droplets of the viscoelastic liquid. The radius of these filaments decreases in an uniaxial extensional flow.  相似文献   

3.
The propagation of one-dimensional perturbations in a viscoelastic relaxing liquid containing gas bubbles is investigated within the framework of the homogeneous model of the medium when the wavelength of the perturbation is much larger than the distance between the bubbles and the bubble radius. The evolution of stationary and nonstationary waves is investigated analytically and with the use of numerical integration; shock waves are also investigated. The results are compared with the behavior of perturbation waves in a Newtonian liquid with gaseous inclusions. The models of the gas-liquid medium [1, 2] are generalized to the case when the liquid phase is a viscoelastic liquid, for example, a weak aqueous solution of polymers. The propagation of longwave perturbations of finite amplitude in such a mixture is investigated using the technique developed in [3].  相似文献   

4.
The deformation and breakup of a non-Newtonian slender drop in a Newtonian liquid in a simple extensional and creeping flow has been theoretically studied. The power-law was chosen for the fluid inside the drop, and the deformation of the drop is described by a single ordinary differential equation, which was numerically solved. Asymptotic analytical expressions for the local radius were derived near the center and close to the end of the drop. The results for the shape of the drop and the breakup criterion are presented as a function of the capillary number, the viscosity ratio and type of non-Newtonian fluid inside the drop. An approximate analytical solution is also suggested which is in good agreement with the numerical results.  相似文献   

5.
In this paper, we study the breakup behavior of Newtonian liquid and non‐Newtonian liquid jets with an arbitrary variation surface tension imposed along its length. The effect of duty cycle, fluid properties, and the various profiles of the surface tension is investigated. It is shown that the breakup behavior of a jet can be constructed by using the Fourier expansion of the surface tension profile. When the dimensionless wavenumber k is larger than 0.5, the jet breakup behavior is determined by the lowest frequency of the Fourier series expansion of the surface tension profile. As k decreases, higher frequency Fourier modes come to play. In general, for k between, 1∕(n+ 1) and 1∕n,n Fourier modes are needed to determine the jet breakup behavior. The current nonlinear model differs from the existing linear slender jet model in the literature in several ways. While the principle of superposition is valid for the linear model, it is not generally valid for the current nonlinear model. For the linear model, the jet will never break up when the wavenumber is larger than 1. The current model, however, shows clearly that the jet can indeed break up when the wavenumber is larger than 1. Furthermore, the current nonlinear model predicts a breakup time substantially higher than that from the linear model.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The temporal instability behavior of a viscoelastic liquid jet in the wind-induced regime with axisymmetric and asymmetric disturbances moving in an inviscid gaseous environment is investigated theoretically. The corresponding dispersion relation between the wave growth rate and the wavenumber is derived. The linear instability analysis shows that viscoelastic liquid jets are more unstable than their Newtonian counterparts, and less unstable than their inviscid counterparts, for both axisymmetric and asymmetric disturbances, respectively. The instability behavior of viscoelastic jets is influenced by the interaction of liquid viscosity and elasticity, in which the viscosity tends to dampen the instability, whereas the elasticity results in an enhancement of instability. Relatively, the effect of the ratio of deformation retardation to stress relaxation time on the instability of viscoelastic jets is weak. It is found that the liquid Weber number is a key measure that controls the viscoelastic jet instability behavior. At small Weber number, the axisymmetric disturbance dominates the instability of viscoelastic jets, i.e., the growth rate of an axisymmetric disturbance exceeds that of asymmetric disturbances. When the Weber number increases, both the growth rate and the instability range of disturbances increase drastically. The asymptotic analysis shows that at large Weber number, more asymmetric disturbance modes become unstable, and the growth rate of each asymmetric disturbance mode approaches that of the axisymmetric disturbance. Therefore, the asymmetric disturbances are more dangerous than that of axisymmetric disturbances for a viscoelastic jet at large Weber numbers. Similar to the liquid Weber number, the ratio of gas to liquid density is another key measure that affects the viscoelastic jet instability behavior substantially.  相似文献   

7.
Dynamics and Breakup of Pulse Microjets of Polymeric Liquids   总被引:1,自引:0,他引:1  
The possibilities of controlling the dynamics and breakup of pulsed low-viscosity liquid microjets by means of small amounts of polymeric additives are considered. Significant differences between the breakup of pulse jets of Newtonian and viscoelastic polymeric liquids are recorded by means of high-speed photography. In flight a standard Newtonian fluid jet fragments into many secondary droplets. Depending on the molecular parameters, for a polymeric liquid three variants of the behavior of the jet in flight are possible: (1) the jet tail fragments into several secondary droplets; (2) the entire tail flows into the leading drop without loss and a single drop is formed; (3) the drop ejected from the nozzle returns to the nozzle under the action of elastic internal stresses in the tail. Criteria for the transition from one regime of jet motion to another are proposed.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, 2005, pp. 45–63.Original Russian Text Copyright © 2005 by Bazilevskii, Meyer, and Rozhkov.  相似文献   

8.
A thin film of low-viscosity lubricating liquid between a solid wall and a viscous material reduces shear stress on the latter and tends to make it flow as though it were slipping along the wall. The result when the lubricated material is being squeezed out of the gap between approaching parallel plates is flow more nearly irrotational, or extensional, the more effective the lubricating film on the plates. Two Newtonian analyses of this flow situation are reported. One is an approximate, asymptotic analytical solution for Newtonian lubricating flow in the films and combined mixed flow, shear and extension, in the viscous layer. The second is a full two-dimensional axisymmetric solution of the momentum and continuity equations along with the kinematic condition which governs the motion of the interface. Both analyses indicate that there are two limiting flow regimes, depending on the ratio of the thickness of each of the two phases to radius and on the viscosity ratio of the two liquids. In one limit the flow is parallel squeezing and the lubricant layer slowly thins and persists a long time. In the other the lubricant is expelled preferentially. Implications of the results are discussed for rheological characterization of viscoelastic liquids and for prediction of lubricated or autolubricated flows in processing situations.  相似文献   

9.
Summary A theoretical analysis is made of the flow of an incompressible viscoelastic fluid contained between two concentric spheres when the outer sphere is moved instantaneously in a given direction, whilst the inner sphere remains at rest. The solution is developed by successive approximations, the first corresponding to the instantaneous slow flow of a Newtonian viscous fluid. By allowing the radius of the outer sphere to approach infinity, the result obtained can be used to give an approximate solution to the equations of motion of a visco-elastic fluid flowing slowly past a fixed sphere.  相似文献   

10.
Problems of compression of a plate on a wedge–shaped target by a strong shock wave and plate acceleration are studied using the equations of dissipationless hydrodynamics of compressible media. The state of an aluminum plate accelerated or compressed by an aluminum impactor with a velocity of 5—15 km/sec is studied numerically. For a compression regime in which a shaped–charge jet forms, critical values of the wedge angle are obtained beginning with which the shaped–charge jet is in the liquid or solid state and does not contain the boiling liquid. For the jetless regime of shock–wave compression, an approximate solution with an attached shock wave is constructed that takes into account the phase composition of the plate material in the rarefaction wave. The constructed solution is compared with the solution of the original problem. The temperature behind the front of the attached shock wave was found to be considerably (severalfold) higher than the temperature behind the front of the compression wave. The fundamental possibility of initiating a thermonuclear reaction is shown for jetless compression of a plate of deuterium ice by a strong shock wave.  相似文献   

11.
可压缩流场中气泡脉动数值模拟   总被引:6,自引:3,他引:3  
在应用边界元方法对气泡动力学的研究中, 绝大多数模型是建立在不压缩势流理论基础之上, 针对可压缩流场中气泡运动特性的研究很少. 从波动方程出发, 分别在气泡运动前期和后期对波动方程进行简化, 得到气泡运动局部和全局简化方程, 采用双渐进方法对简化方程进行匹配, 提出了考虑流场可压缩性的非球状气泡运动模型. 该模型的计算结果与Prospertti 等的解析结果吻合很好, 气泡脉动最大半径和内部最大压力随气泡脉动逐渐减小. 基于该模型对比了自由场中药包爆炸考虑可压缩性与不考虑可压缩性的计算结果, 发现考虑可压缩性气泡射流速度较小, 随后基于该模型计算了刚性边界下气泡的运动特性.  相似文献   

12.
The breakup mechanism and instability of a power law liquid jet are investigated in this study. The power law model is used to account for the non-Newtonian behavior of the liquid fluid. A new theoretical model is established to explain the breakup of a power law liquid jet with axisymmetric and asymmetric disturbances, which moves in a swirling gas. The corresponding dispersion relation is derived by a linear approximation, and it is applicable for both shear-thinning and shear-thickening liquid jets. Analysis results are calculated based on the temporal mode. The analysis includes the effects of the generalized Reynolds number, the Weber number, the power law exponent, and the air swirl strength on the breakup of the jet. Results show that the shear-thickening liquid jet is more unstable than its Newtonian and shear-thinning counterparts when the effect of the air swirl is taken into account. The axisymmetric mode can be the dominant mode on the power law jet breakup when the air swirl strength is strong enough, while the non-axisymmetric mode is the domination on the instability of the power liquid jet with a high We and a low Re n . It is also found that the air swirl is a stabilizing factor on the breakup of the power law liquid jet. Furthermore, the instability characteristics are different for different power law exponents. The amplitude of the power law liquid jet surface on the temporal mode is also discussed under different air swirl strengths.  相似文献   

13.
The problem of the stability of a liquid electrolyte jet under the action of a tangential electric field is considered. The radii of these jets, usually observable in experiments, vary from nanoscales to microscales. In this study, we consider microjets with the characteristic thickness of the double ion layer near the interface much less than the jet radius. The stability problem is analytically solved with account for the presence of this small parameter. The assumption on the electric neutrality of the jet as a whole leads to an explicit expression for the surface electric charge induced by the external field. The solution of the hydrodynamic problem in the external domain closes the solution and gives the dependence of the disturbance growth rate on the wavenumber. The cases of DC and AC electric fields are qualitatively compared. The distinctive features of jet stabilization by an AC high-frequency electric field are discussed.  相似文献   

14.
The stability of a liquid electrolyte placed in a tangential electric field oscillating harmonically at high frequency is considered assuming that the liquid is viscous and Newtonian. It is shown that, if the Peclet number calculated from the thickness of the Debye layer is small, the problem can be solved separately for the electrodynamic part of the problem in the Debye layer and for the hydrodynamic part of the problem in the jet. The linear stability of the trivial solution of the problem is investigated. A dispersion relation is derived and used to study the effect of the amplitude and frequency of electric field oscillations on the stability of the jet. It is shown that the presence of the external oscillating field has a stabilizing effect on the jet. The basic stability regimes as functions of the control parameters of the problem and bifurcation changes in the regimes are investigated.  相似文献   

15.
Selective withdrawal refers to the process of drawing one or both components of stratified fluids through a tube placed near their interface. This paper reports an experimental study of selective withdrawal of viscous and viscoelastic liquids under air. The key mechanism of interest is how the viscoelasticity in the bulk liquid affects the evolution of the free surface. This is investigated by comparing the interfacial behavior between a Newtonian silicone oil and two dilute polymer solutions. While the surface undergoes smooth and gradual deformation for Newtonian liquids, for the polymer solutions there is a critical transition where the surface forms a cusp from which an air jet emanates toward the suction tube. This transition shows a hysteresis when the flow rate or location of the tube is varied. In the subcritical state, the surface of polymer solutions deform much more than its Newtonian counterpart but the deformation is more localized. The interfacial behavior of the polymer solutions can be attributed to the large polymer stress that develops under the surface because of predominantly extensional deformation.  相似文献   

16.
The theoretical study of nonisothermal flows of magnetizable liquids presents serious matheical difficulties, which are intensified as compared to to the study of normal liquids by the necessity of simultaneous solution of both the hydrodynamics and Maxwell's equations, with corresponding boundary conditions for the magnetic field. Thus, in most cases problems of this type are solved by neglecting the effect of the liquid's nonisothermal state on the field distribution within the liquid, and also, as a rule, with use of an approximate solution for Maxwell's equations and fulfillment of the boundary conditions for the field [1–3]. The present study will present easily realizable practical formulations of the problem which permit exact one-dimensional solutions of the complete system of the equations of thermomechanic s of electrically nonconductive incompressible Newtonian magnetizable liquids with constant transfer coefficients. A common feature of the formulations is the presence of a longitudinal temperature gradient along the boundaries along which liquid motion is accomplished. Plane-parallel convective flows of this type in a conventional liquid and their stability were considered in [4–6].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 126–133, May–June, 1979.  相似文献   

17.
In the flow of a suspension in a channel with porous walls, when the size of particles of a suspended phase is much less than the width of the channel but greatly exceeds the size of the pores (in particular, in the flow of blood in the plasma separator used in an artificial kidney system [1, 2]), phenomena are observed which apparently cannot be satisfactorily explained by means of the well-known solutions of problems on the motion of a Newtonian fluid [3]. For example, the flow rate of the liquid phase of the suspension through the walls depends on the velocity of the main flow and does not depend on the pressure drop on the wall at fairly high values of it [1, 2]. The present study gives below the formulation and an approximate solution, which explains this effect, of the problem of an incompressible two-phase suspension in a long slit with porous walls which are impermeable in relation to the suspended phase and through which the liquid phase is pumped. Certain effects are taken into account which are caused by the high volume concentration of the suspended phase.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 37–43, November–December, 1987.  相似文献   

18.
A model for oscillating free surface jet flow of a fluid from an elliptical orifice, together with experimental measurements, can be exploited to characterize the elongational viscosity of non-Newtonian inelastic fluids. The oscillating jet flow is predominantly elongational, with a small strain that oscillates rapidly between large and zero strain rates. We find that to reproduce the experimentally observed steady oscillating jet flow in model simulations, the assumed form of the non-Newtonian viscosity as a function of strain rate must have zero gradient, i.e., be Newtonian, at zero strain rate (a behavior exhibited, in general, by real inelastic fluids). We demonstrate that the Cross, Carreau, Prandtl-Eyring, and Powell-Eyring forms, although they have finite viscosity at zero strain rate, have either nonzero or even unbounded gradient at zero, and hence are unable to model oscillating jet behavior. We propose a new non-Newtonian viscous form which has all of the desirable features of existing forms (high and low strain rate plateaus, with adjustable location and steepness of the transition) and the additional feature of Newtonian behavior at low strain rates. Received: 7 February 2000 Accepted: 31 October 2000  相似文献   

19.
The problem of a thin rod moving longitudinally along the axis of symmetry of a cylindrical vessel is examined for Newtonian and non-Newtonian liquids. For non-Newtonian fluids, the inelastic power-law type solution predicts the experimental results particularly well. On account of wall effects, the induced pressure gradients are much greater for a Newtonian fluid than for a viscoelastic fluid. In fact, in the latter case, they may be considered negligible when the radius of the inner cylinder is small compared to the one of the outer cylinder.  相似文献   

20.
Weakly conducting fluid flows in an electric field in the presence of phase interfaces are investigated theoretically and experimentally. The object of the investigation is an axisymmetric jet. The analysis is carried out within the framework of electrohydrodynamics (EHD) with allowance for surface charge transfer on mobile interfaces. The jet shape is calculated at large distances from the outflow point. The theoretical and experimental data are compared for Newtonian and polymeric fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号