首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The molecular structure of the title compounds have been investigated by gas-phase electron diffraction. Both molecules exist as about equal amounts of the two gauche conformers. There is no evidence for the presence of a syn conformer, but small amounts of this form cannot be excluded. Some of the important distance (ra) and angle (∠α) parameters for 1,1-dichloro-2-bromomethyl-cyclopropane are: r(CH) = 1.095(19) Å, r(C1C2) = 1.476(11) Å, r(C2C3) = 1.517(31) Å, r(CCH2Br) = 1.543(32) Å, r(CCl) = 1.752(6) Å, r(CBr) = 1.950(13) Å, ∠CCBr = 110.5(1.9)°, ∠ClCCl = 111.9(6)°, ∠CCC = 117.5(1.3)°, σ1 (CC torsion angle between CBr and the three-membered ring for gauche-1) = 116.2(5.6)°, σ2 = −132.7(7.6). For 1,1-dichloro-2-cyanomethyl-cyclopropane the parameter values are: r(CH) = 1.101(16) Å, r(C1C2) = 1.498(9) Å, r(C2C3) = 1.544(21) Å, r(C2C4) = 1.497(33) Å, r(CCN) = 1.466(26) Å, r(CN) = 1.165(8) Å, r(CCl) = 1.754(5) Å, ∠CCCN = 113.7(2.0)°, ∠CCC = 122.8(1.6)°, ClCCl = 112.5(4)°, σ1 = 113(13)°, σ2 = −124(10)°.  相似文献   

2.
μ-Oxo-bis(triorganoantimony- and -bismuthsulfonates) (R3MO3Sr′)2O[M  Sb, R  Ph, benzyl, M  Bi, R  Ph; R′  Me, CH2CH2OH, CF3, Ph, 4-CH3C6H4, 2,4-(NO2)2C6H3] and (Me3SbO3SR′)2O · nH2O (n  2, R′  CF3, Ph, 4-CH3C6H4; n  0, R′  CH3, CH2CH2OH) have been prepared by reaction of (Ph3SbO)2 and Me3Sb(OH)2, respectively, with appropriate sulfonic acids or with (R3MX)2O (R  Ph, benzyl; X  Br) and R′SO3H in the presence of Ag2O. The anhydrous compounds (Me3SbO3SR′)2O are obtained by heating the hydrates. Me3Sb(OH)2 and 2,4-(NO2)2C6H3SO3H react to give the hydroxosulfonate Me3Sb(OH)O3SR′. CH3OH solvolyzes the products. A covalent structure, with pentacoordinated Sb or Bi atoms, unidentate O3SR′ ligands and μ-oxygen in apical, and R in equatorial positions, is inferred from the vibrational data for all nonhydrated sulfonate compounds. A correlation between νas(SbOSb) vibration and SbOSb bond angles in hexaphenyl distiboxans was established, which indicates that the SbOSb bridges are linear in (Ph3SbO3SR′)2O (R′  2,4-(NO2)2C6H3, 2,4,6-(NO2)3C6H2) and bent in the other compounds. Data also indicate that there is a linear BiOBi bridge in (Ph3BiO3SCH2CH2OH)2O. The hydrated compounds have a distinctly different ionic structure one H2O being coordinated apically to each of the pentacoordinated Sb atoms in the cation [(Me2SbOH2)2O]2+. This proposal is verified by the crystal structure determination of (Me3SbO3SPh)2O · 2H2O which revealed an ionic structure: [(Me3SbOH2)2O](O3SPh)2. The angles μ-OSbO(H2O) of 171.7(2) and 171.0(2)° and μ-OSbC(CH3) of 98.3° (mean) reflect the distortion of the trigonal bipyramidal surrounding of the Sb atoms, and the long SbO(H2O) distance of 244.4(5) pm (mean) the rather weak bonding of the water molecules to Sb. The distances S [144.6(6) pm (mean)] and the angles OSO [112.6(4)° (mean)] in the sulfonate anion are essentially identical. Hydrogen bonds exist between the water ligands and O atoms of the anions.  相似文献   

3.
The binuclear complex (C5H5)2Cr2(S)(SCMe3)2 was prepared by refluxing a solution of chromocene and t-butylmercaptane in heptane. The structure of the product was determined by single crystal X-ray diffraction. The chronium atoms are linked by a sulphide bridge (SCr 2.24 Å;, <CrSCr 74.1° and two SCMe3 bridges (CrS 2.38 Å;, <CrSCr 68.3–69.3°). The two cyclopentadienyl ligands (CC 1.41 Å;, CrC 2.23 Å;) are in apical positions, their ring planes being parallel to each other. The complex is an antiferromagnet (?2J cm?1) despite the small CrSCr angles and short chromiumchromium distance (2.689 Å;) indicative of strong CrCr bonding.  相似文献   

4.
Reactions of (RC5H4)2Cr2(SCMe3)2S(I, R = H; II, R = Me) with (PPh3)2PdCl2 in benzene at 20°C gives trinuclear complexes (RC5H4)2Cr2Cl23-S)(μ-SCMe3)2Pd(PPh3)(III, R = H; IV, R = Me). The structure of IV as a monobenzene solvate is established by an X-ray analysis (black-green triclinic crystals space group P1 with a = 11.403(4), b = 14.933(5), c = 14.131(5) Å, α = 99.13(3), β = 112.72(3), γ = 95.65(3)°, V = 2201.6 Å, Z = 2; IV·C6H6). The structure was solved by direct methods and refined in an anisotropic approximation to R = 0.046, Rw = 0.058 for 7643 reflections with I ? 2σ(I). In the molecule of IV metal atoms are separated by non-bonding distances (Cr … Cr 4.079(I), Cr … Pd 3.230(I) and 3.380(I) Å) but linked by the bridging tridentate sulphur atom (CrS 2.339(2) and 2.329(2), PdS 2.327(2) Å), and two SCMe3 groups between Pd and Cr (CrS 2.396(2) and 2.403(2), PdS 2.350(2) and 2.381(2) Å, Cr?Pd 85.14(6) and 89.92(6)°). The Cl atoms are transferred from Pd to Cr atoms (CrCl 2.308(2) Å) and being terminally coordinated are in trans-positions to each other (as well as η-CH3C5H4 rings) with respect to the Cr2Pd plane. Cr atoms in III and IV exhibit ferromagnetic exchange interactions over the Cr?Cr system (+2J = 28 and 11 cm?1, respectively).  相似文献   

5.
A series of [3]ferrocenophanes of general formula Fe(C5H4X)2YCl2 and the spiro compounds [Fe(C5H4X)2]2Ge (X = S, Se; Y = Ge, Sn) have been prepared by the reaction of ferrocene 1,1′-dithiol and ferrocene 1,1′-diselenol with tetrahalides of germanium and tin. Spectroscopic properties of the compounds are reported. In solution, the compounds are fluxional by a bridge reversal process. The crystal structure of 1,3-diselena-2,2-dichlorogermyl-[3]ferrocenophane at 163 K. has been determined by X-ray diffraction methods. At that temperature, crystals have space group P21/n with a 6.222(3), b 16.156(13), c 12.968(4) Å, β 97.53(1)° and Z = 4. Least-squares refinement gave R = 0.033 for 2834 unique significant reflections whose intensities were measured by counter diffractometry. The two SeGe bond lengths are 2.323 and 2.325(1) Å, with GeCl 2.148 and 2.161(1) Å. The SeGeSe bond angle is 118.2(1)°, ClGeCl 104.7(1)°, and SeGeCl angles range from 106.2 to 109.8(1)°. The SeC bond lengths are 1.901 and 1.904(5) Å, with CSeGe angles of 95.8 and 96.5(2)°. The cyclopentadienyl rings are in an eclipsed conformation with a mean twist angle of 2.7°, and are inclined to one another at 6.1°. The Se atoms are displaced from the ring planes by 0.17 and 0.20 Å yielding a non-bonded intramolecular Se…Se contact of 3.99 Å.  相似文献   

6.
The molecular structure of [PdCl(CH2SCH3)(PPh3)] has been determined from three-dimensional X-ray diffraction data collected at both ?160 and 20°C. The crystal belongs to the monoclinic system, space group P21/c, with four formula units in a cell of dimensions: a 11.398(2), b 9.788(1), c 17.267(2) Å and β 95.38(1)° at ?160°C; a 11.454(3), b 9.880(2), c 17.459(2) Å and β 95.84(1)° at 20°C. The structure was solved by the conventional heavy atom method, and refined by the least-squares procedure to R = 0.049 (?160°C) and 0.068 (20°C) for observed reflections. No essential difference is observed between molecular structures at ?160 and 20°C. The geometry around the palladium atom is square-planar. The CH2SCH3 group, bonded to the palladium atom through PdC and PdS bonds, forms a metallocyclic three-membered ring [PdC(1) 2.042(6), PdS 2.371(1), SC(1) 1.756(6) and SC(2) 1.807(7) Å, PdC(1)S 76.9(2), PdC(1)H 113(3) and 122(4)°, SC(1)H 115(3) and 112(4) and HC(1)H 113(5)° at ?160°C].  相似文献   

7.
en Two differnt crystal modifications of hexaphenyldigermanium sulfide (C6H5GeSGe(C6H5)3 (I and II were obtained by crystallization from hot benzene/methanol or form ethanol at 20°C. Single crystal X-ray structural analyses for both I (low temperature data at ?130°C) and II (at 20°C) (I, R = 0.046; II, R = 0.048) were performed. I is monoclinic, P21/c, with a = 11.020(3), b = 15.473(3), c 18.606(3) »,π = 106.92(2)°, Z = 4; II is orthorhombic, P212121, with a = 2.617(2), b = 17.345(3), c = 18.408(3) », Z = 4.The molecules have different conformeric structures with respect to a rotation of the (C6H6)3Ge groups around the Ge bonds with very similar bond lenghts and angles. Bond data for I(II) are: GeS 2.212(1) and 2.261(1) » (2.227(2) and 2.240(2) »); GeC 1.933(4) ? 1.971(4), mean 1.945(5) » (1.931(7)?1.954(7), mean 1.943(4) »); GeSGe 111.2(1)° (110.7(1)°). The Ge bond lenghts are comparable to those in thiogermanates and do not indicate significant π-bond contributions.  相似文献   

8.
The title compound, C58H52Sn3, belongs to the triclinic space group P1, with a 10.165, b 13.365, c 18.670 Å, α 96.28, β 93.88, γ 103.15°, V = 2443.8 Å3, fw = 1105.1, Z = 2, Dcalc 1.501 g cm?3, m.p. 206.5–208°C, λ(Mo-Kα) 0.71069 Å. The structure was refined on 2684 nonzero reflections to an R factor of 0.044. The crystal contains molecules in which the (SnCH2)3CH core possesses an approximate C3 symmetry. The three SnC(H2) bonds are gauche to the C(4)-H bond. Repulsive interactions involving the bulky Ph3Sn substituents lead to large SnC(H2)C(H) angles (av. 117.3°), whereas the C(H2)C(H)C(H2) angles at the tertiary carbon average 111.3°. Little distortion of the Ph3Sn groups themselves is present, since the PhSnPh angles (av. 109.8°) are almost equal to the C(H2)SnPh angles (av. 109.9°). The molecule as a whole has no symmetry because the aromatic rings in the three Ph3Sn groups have different orientations. The phenyl groups create a pocket in the middle of the molecule which encloses and shields the tertiary hydrogen atom. The resulting inaccessibility of this hydrogen accounts in part for the low reactivity of the title compound in redox reactions.  相似文献   

9.
The structures of (C6F5)2S2 and (C6F5)2Se2 have been determined by single crystal, X-ray diffraction techniques. The compounds are isostructural although the molecules are packed differently in the crystal in comparison with their phenyl analogues. Important bond lengths and angles are: SS, 2.059(4)Å; SeSe, 2.319(4)Å; SC, 1.770Å; SeC, 1.910(15)Å; SSC, 101.3(3)°; SeSeC, 98.8(1)°.  相似文献   

10.
C5H5Co(PMe3)CS2 (IV) is formed in practically quantitative yield in the reaction of C5H5Co(PMe3)2 (I) or the heterobinuclear complex C5H5(PMe3)Co(CO)2Mn(CO)C5H4Me (III) with CS2. The crystal structure shows that the carbon disulfide bonds as a dihapto ligand through the carbon and one sulfur atom (S(2)) (CoC = 1.89, CoS(2) = 2.24 Å, S(2)CS(1) = 141.2°). The two CS bond lengths in IV (CS(2) = 1.68, CS(1) =1.60 Å) are greater than in free CS2 (1.554Å) which is in agreement with the strong π-acceptor character of h2-CS2 as shown in the spectroscopic data. IV reacts with Cr(CO)5THF and C5H5Mn(CO)2THF to give the complexes C5H5(PMe3)Co(SCS)Cr(CO)5 (V) and C5H5(PMe3)Co(SCS)Mn(CO)2C5H5 (VI) respectively, in which the sulfur atom S(1) that is not bound to cobalt coordinates to the 16-electron fragments Cr(CO)5 and Mn(CO)2C5H5. The spectroscopic data of IV, V and VI are discussed.  相似文献   

11.
The crystal structure of Ph3SnNCS has been determined by single crystal X-ray diffraction. The crystals are monoclinic, P21, a = 19.02(3), b = 11.67(2), c = 15.49(2)Å;, β = 95.64(10)°, Z = 8. The molecules are arranged in infinite zig-zag S…SnNCS…Sn&.sbnd; chains similar to those in Me3SnNCS, but with slightly longer SnN, shorter SnS bonds, and almost planar SnC3 units. Principal mean bond lengths and angles are: SnN, 2.22(5); NC, 1.17(8); CS, 1.58(7); SSn, 2.92(1); SnC, 2.09(3); CC, 1.38(2)Å; SnNCm 161(4); CSSn, 97(3); SSnN, 175(3) and CSnC, 119.8(1.5)°.  相似文献   

12.
The thermally-stable cobalt(II) dialkyl compound CoR2 [R = C(SiMe3)2C5H4N-2] (1) has been prepared by reaction of [{LiR}2] with cobalt(II) chloride in ether. An X-ray structural study has revealed a centrosymmetric molecular skeleton (for two nearly identical independent molecules) in which a pair of sterically-hindered, functionalized pyridine ligands R are trans-chelated to the central planar four-coordinate cobalt(II) atom, with mean CoCα and CoN distances of 2.094(6)Å and 1.919(4) Å respectively, and a CαCoN angle of 69.6(2)°.  相似文献   

13.
The precise molecular structure of [PdCl(CH2SCH3)(PPh3)2] has been determined from three-dimensional X-ray diffraction data collected at ?160°C. The CH2Cl2 solvated crystal ([PdCl(CH2SCH3)(PPh3)2 · CH2Cl2]) belongs to the monoclinic system, space group P21/n, with four formula units in a cell of dimensions: a 14.973(3), b 15.333(3), c 17.377(3) Å and β 115.77(1)° at ?160°C. The structure was solved by the conventional heavy atom method and refined by the least-squares procedure to R = 0.035 for observed reflections. The geometry around the palladium atom is square-planar. The phosphorus atoms of the two triphenylphosphine ligands are mutually trans. The CH2SCH3 group is bonded to the palladium atom only through the PdC σ-bond and the sulfur atom is not bonded to the metal atom (PdC(1) 2.061(3), SC(1) 1.796(3), SC(2) 1.817(5), Pd?S 2.973(1) Å, PdC(1)S 100.64(14)° and C(1)SC(2) 101.28(18)°). The structure is in contrast to that of [PdCl(CH2SCH3)(PPh3)], in which both the carbon and sulfur atoms of the CH2SCH3 group are bonded to the palladium atom.  相似文献   

14.
The molecular structure of cyclopropyl silane (CPS) has been determined by gas phase electron diffraction. Among other parameters the bond distances (ra) are: C1C2 = 1.528(2) Å, C2C3 = 1.490(4) Å, SiC = 1.840(2) Å, CH = 1.095(3) Å. The angle between the ring plane and the bond SiC is 55.9(3)°. The introduction of a tilt of the silyl group is in agreement with the secondary effect of substituents. The role of the silicon 3d orbitals in the interpretation of the structural data of CPS is discussed. Our results support the interpretation of the SiC bond to silicon in terms of dπ conjugation. This causes an asymmetry in the structure of the ring. The (pd)π bonding concept is considered to be the sum of three different contributions: ionic, steric and dπ conjugation.  相似文献   

15.
The crystal and molecular structure of hexaphenylditin selenide (C6H5)3SnSeSn(G6H5)3 was determined by X-ray diffraction data and was refined to R  0.055. The compound is monoclinic, space group P21, with a  9.950(4), b  18.650(7), c  18.066(6) Å, β  106.81(4)°, Z  4. The two molecules in the asymmetric unit differ slightly in their conformations, both having approximate C2 symmetry. Bond lengths and angles are: SnSe 2.526 (2.521(3) ? 2.538(3)) Å; SnC 2.138 (2.107(16)?2.168(19)) Å; SnSeSn 103.4(1)°, 105.2(1)°. There are only slight angular distortions at the SnSeC3 tetrahedra (SeSnC angles: 104.3(5)?114.8(4)°). The bond data indicate essentially single bonds around the Sn atoms.  相似文献   

16.
The molecular structure of [(C6H5)3P]2Pt(C5H8) has been determined from three-dimensional X-ray diffraction data (R = 0.045 for 6033 reflections). The crystal belongs to the triclinic system, space group P1, with two formula units in a cell of dimensions: a = 18.557(2), b = 10.216(2), c = 9.647(2) Å, α = 98.29 (3), β = 73.44(2), and γ = 88.34(2)°.One of the olefinic bonds of dimethylallene, which has no adjacent methyl groups, is coordinated to the platinum atom: PtC(1) = 2.108(8), PtC(2) = 2.049(7) Å. The coordinated dimethylallene molecule is no longer linear, the C(1)C(2)C(3) angle being 140.8(8)°, which is significantly smaller than that found in [(C6H5)3P]2Pd(C3H4). The C(1)C(2) distance is 1.430(11) Å, whereas the uncoordinated bond distance is normal [C(2)C(3) = 1.316(11)Å].  相似文献   

17.
Nearly regular tetrahedral silicon bond configuration and a considerably distorted ring characterize the p-bis(trimethylsilyl)benzene molecular geometry according to an electron diffraction study. The SiCmethyl bond is longer than the SiCphenyl bond, in agreement with expectation but contrary to an X-ray diffraction determination. The extent of ring deformation is consistent with the electropositive character of the trimethylsilyl substituent and with the structural variations in other para-disubstituted benzene derivatives. The electron diffraction data are consistent with either free rotation around the SiCphenyl bonds or with a rotamer deviating by about 15° from the eclipsed form. The following bond lengths (rg, pm) and bond angles (°) have been determined with parenthesized estimated total errors: (CC)mean 140.8(3), (Cipso)(CorthoCmeta) 1.6(7), (SiC)mean 188.0(4), (SiCmethyl)(SiCphenyl) 3.3(7), (CH)methyl 111.3(3), CCipsoC 115.7(6), and CphenylSiCmethyl 109.2(4).  相似文献   

18.
Dimethylbis(2-pyridinethiolato-N-oxide)tin(IV), Me2Sn(2-SPyO)2, crystallizes in space group P21/c with a 9.877(3), b 11.980(4), c 13.577(3) Å, β 109.1(2)° and Z = 4. The structure was refined to RF = 0.036 for 2263 Mo-Kα observed reflections. The coordination geometry at tin is a skew-trapezoidal bipyramid, with the oxygen [SnO 2.356(3), 2.410(4) Å] and sulfur [SnS 2.536(1), 2.566(1) Å] atoms of the chelating groups occupying the trapezoidal plane and the methyl groups [SnC 2.106(6), 2.128(7) Å] occupying the apical positions. The methyl-tin-methyl skeleton is bent [CSnC 138.9(2)°]. The SSnS angle is 77.8(1)°, but the OSnO angle is opened to 136.7(1)° to accommodate the intruding methyl groups. The carbontincarbon angles predicted from quadrupole splitting (119mSn Mössbauer) and one-bond 119Sn13C coupling constant (solution 13C NMR) data agree closely with the experimental value.  相似文献   

19.
Diphenylcyclopropenethione reacts with Fe2(CO)9 in THF to give tetracarbonyl(diphenylcyclopropenethione)iron (C3Ph2S)Fe(CO)4. The crystal structure was determined by single crystal X-ray analysis. The compound crystallizes in the triclinic space group P1 with lattice constants a 1520.3(5), b 1026.1(3), c 933.5(2) pm; α 120.58(2), β 109.36(2), γ 111.72(2)°; Z 2. The molecule consists of an unchanged diphenylcyclopropenethione ligand coordinated via the sulphur atom to an Fe(CO)4 group in the axial position. The CS distance is 165.2(7) pm with an FeSC angle of 111.2(2)°.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号