首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fabrication and functionalization of hydrogels from well‐defined dendron‐polymer‐dendron conjugates is accomplished using sequential radical thiol‐ene “click” reactions. The dendron‐polymer conjugates were synthesized using an azide‐alkyne “click” reaction of alkene‐containing polyester dendrons bearing an alkyne group at their focal point with linear poly(ethylene glycol)‐bisazides. Thiol‐ene “click” reaction was used for crosslinking these alkene functionalized dendron‐polymer conjugates using a tetrathiol‐based crosslinker to provide clear and transparent hydrogels. Hydrogels with residual alkene groups at crosslinking sites were obtained by tuning the alkene‐thiol stoichiometry. The residual alkene groups allow efficient postfunctionalization of these hydrogel matrices with thiol‐containing molecules via a subsequent radical thiol‐ene reaction. The photochemical nature of radical thiol‐ene reaction was exploited to fabricate micropatterned hydrogels. Tunability of functionalization of these hydrogels, by varying dendron generation and polymer chain length was demonstrated by conjugation of a thiol‐containing fluorescent dye. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 926–934  相似文献   

2.
A synthetic toolbox for the introduction of aldehydo and hydrazido groups into the polysaccharides hyaluronic acid, alginate, dextran, pullulan, glycogen, and carboxymethyl cellulose and their use for hydrogel formation is reported. Upon mixing differently functionalized polysaccharides derived from the same natural precursor, hydrazone cross‐linking takes place, which results in formation of a hydrogel composed of one type of polysaccharide backbone. Likewise, hydrogels based on two different polysaccharide strands can be formed after mixing the corresponding aldehydo‐ and hydrazido‐modified polysaccharides. A second line of these studies paves the way to introduce a biomedically relevant ligand, namely, the adhesion factor cyclic RGD pentapeptide, by using an orthogonal click reaction. This set of modified polysaccharides served to create a library of hydrogels that differ in the combination of polysaccharide strands and the degree of cross‐linking. The different hydrogels were evaluated with respect to their rheological properties, their ability to absorb water, and their cytotoxicity towards human fibroblast cell cultures. None of the hydrogels studied were cytotoxic, and, hence, they are in principal biocompatible for applications in tissue engineering.  相似文献   

3.
We demonstrated the successful postfunctionalization of poly(oxanorbornene imide) (PONB) with two types of double bonds using sequential orthogonal reactions, nucleophilic thiol‐ene coupling via Michael addition and radical thiol‐ene click reactions. First, the synthesis of PONB with side chain acrylate groups is carried out via ring‐opening metathesis polymerization and nitroxide radical coupling reaction, respectively. Subsequently, the resulting polymer having two different orthogonal functionalities, main chain vinyl and side chain acrylate, is selectively modified via two sequential thiol‐ene click reactions, nucleophilic thiol‐ene coupling via Michael addition and photoinduced radical thiol‐ene. The orthogonal reactivity of two diverse double bonds, vinyl and acrylate functionalities, for the abovementioned consecutive thiol‐ene click reactions was first demonstrated on the model compound. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Antibacterial hydrogels containing quaternary ammonium (QA) groups were prepared via a facile thiol‐ene “click” reaction using multifunctional poly(ethylene glycol) (PEG). The multifunctional PEG polymers were prepared by an epoxy‐amine ring opening reaction. The chemical and physical properties of the hydrogels could be tuned with different crosslinking structures and crosslinking densities. The antibacterial hydrogel structures prepared from PEG Pendant QA were less well‐defined than those from PEG Chain‐End QA. Furthermore, functionalization of the PEG‐type hydrogels with QA groups produced strong antibacterial abilities against Staphylococcus aureus, and therefore has the potential to be used as an anti‐infective material for biomedical devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 656–667  相似文献   

5.
We describe the use of organic catalysis for the ring‐opening polymerization of functionalized lactones and conversion of the resulting aliphatic polyesters into crosslinked nanoparticles that carry additional functional groups amenable to further modification. Specifically, highly functional aliphatic polyester homopolymers, as well as random and block copolymers, were prepared by 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene catalysis, giving polyesters with pendent alkene and alkyne groups. Azide‐alkyne click and thiol‐ene chemistries were used for postpolymerization modification of diblock copolymers possessing alkene groups on one block and alkyne groups on the other block. The polyesters were crosslinked using azide/alkyne cycloaddition, by reaction of α,ω‐diazides with the pendent alkynes on the polyester backbone. This gave polyester nanoparticles possessing alkene functionality, which were subjected to further modification using thiol‐ene reactions to introduce additional functionality. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Novel modifications of the synthetic polymer poly(vinyl alcohol) (PVA) were developed for application in the field of biomedical engineering. PVA was modified with allyl succinic anhydride, norbornene anhydride as well as with γ‐thiobutyrolactone to produce macromers with reactive ene and thiol groups, respectively. Cytotoxicity studies have shown that the material exhibits almost no cell‐toxicity, when used in concentrations of 1 and 0.1 wt % for 24 h. The obtained macromers were photocrosslinked via thiol–ene chemistry. Storage stability of the macromer mixtures with different concentrations of pyrogallol as stabilizer were investigated. Photorheometry was employed to optimize mixtures concerning reactivity based on their thiol‐to‐ene ratio, photoinitiator concentration, and macromer content. The crosslinked hydrogels were studied concerning their swellability. To form hydrogels with cellular structure two‐photon‐polymerization (2PP) was employed. Processing windows for 2PP of selected mixtures were determined. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2060–2070  相似文献   

7.
As a tribute to Professor Charlie Hoyle, we take the opportunity to review the impact of thiol‐ene chemistry on polymer and materials science over the past 5 years. During this time, a renaissance in thiol‐ene chemistry has occurred with recent progress demonstrating its unique advantages when compared with traditional coupling and functionalization strategies. Additionally, the robust nature of thiol‐ene chemistry allows for the preparation of well‐defined materials with few structural limitations and synthetic requirements. To illustrate these features, the utility of thiol‐ene reactions for network formation, polymer functionalization, dendrimer synthesis, and the decoration of three‐dimensional objects is discussed. Also, the development of the closely related thiol‐yne chemistry is described. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 743–750, 2010  相似文献   

8.
The functionalization of anionically polymerized isoprene with cysteamine applying the thiol‐ene reaction is reported. Antimicrobial activity is implemented by quaternization of the amino functionality by either alkylation or by protonation. The resulting polymers were tested against Gram‐positive as well as Gram‐negative bacteria strains according to the Japanese Industrial Standard Z2801:2000 protocol, partly revealing excellent biocidal performance. Thermal stability up to 200°C allows extrusion processing of the functionalized poly(isoprene)s. The best performing polymer, that is, bearing butylated ammonium‐groups, was compounded with the commodity material poly(propylene). The compound bearing 5 wt % of the biocidal polymer exhibited satisfactory biocidal properties. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Three new polymerizable diols, based on mono‐, di‐, and tri‐O‐allyl‐L ‐arabinitol derivatives, were prepared from L ‐arabinitol as versatile materials for the preparation of tailor‐made polyurethanes with varied degrees of functionalization. Their allyl functional groups can take part in thiol‐ene reactions, to obtain greatly diverse materials. This “click” reaction with 2‐mercaptoethanol was firstly studied on the highly hindered sugar precursor 2,3,4‐tri‐O‐allyl‐1,5‐di‐O‐trityl‐L ‐arabinitol, to apply it later to macromolecules. A polyurethane with multiple pendant allyl groups was synthesized by polyaddition reaction of 2,3,4‐tri‐O‐allyl‐L ‐arabinitol with 1,6‐hexamethylene diisocyanate, and then functionalized by thiol‐ene reaction. The coupling reaction took place in every allyl group, as confirmed by standard techniques. The thermal stability of the novel polyurethanes was investigated by thermogravimetric analysis and differential scanning calorimetry (DSC). This strategy provides a simple and versatile platform for the design of new materials whose functionality can be easily modified. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Long lasting antimicrobial activity and low toxicity are essentials for hydrogels in biomedicine. However, most reported hydrogels cannot combine these characteristics. In this work, poly (hexamethylene guanidine) hydrochloride (PHMG), a cheap cationic polymer with two terminal amino groups, was first modified with methacrylic anhydride to give PHMG dimethacrylamide (PHMGDMAAm), which was further used to prepare hydrogels with acrylamide (AAm) under ultraviolet irradiation in the presence of α‐ketoglutaric acid (α‐KGA) as photoinitiator in aqueous medium. The resultant hydrogels showed strong antibacterial activity against both Gram‐negative and Gram‐positive bacteria due to the PHMG segments in the hydrogel backbone. Moreover, the antimicrobial activity of the hydrogels did not decrease significantly after being soaked in water for one month and washed by water frequently for many times. Hemolysis and cytotoxicity assays demonstrated the excellent biocompatibility of the PHMG‐PAAm hydrogels. This kind of low cost cationic hydrogels with long lasting antimicrobial activity and low toxicity is expected to have potential applications in biomedicine. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2027–2035  相似文献   

11.
Surface functionalization in a nanoscopic scaffold is highly desirable to afford nano‐particles with diversified features and functions. Herein are reported the surface decoration of dispersed block copolymer nano‐objects. First, side‐chain double bond containing oleic acid based macro chain transfer agent (macroCTA), poly(2‐(methacryloyloxy)ethyl oleate) (PMAEO), was synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization and used as a steric stabilizer during the RAFT dispersion block copolymerization of benzyl methacrylate (BzMA) in n‐heptane at 70 °C. We have found that block copolymer morphologies could evolve from spherical micelles, through worm to vesicles, and finally to large compound vesicles with the increase of solvophobic poly(BzMA) block length, keeping solvophilic chain length and total solid content constant. Finally, different thiol compounds having alkyl, carboxyl, hydroxyl, and protected amine functionalities have been ligated onto the PMAEO segment, which is prone to functionalization via its reactive double bond through thiol‐ene radical reactions. Thiol‐ene modification reactions of the as‐synthesized nano‐objects retain their morphologies as visualized by field emission‐scanning electron microscopy. Thus, the facile and modular synthetic approach presented in this study allowed in situ preparation of surface modified block copolymer nano‐objects at very high concentration, where renewable resource derived oleate surface in the nanoparticle was functionalized. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 263–273  相似文献   

12.
Poly(ethylene glycol) (PEG)‐diallyls, ranging from 2 to 8 kDa, were successfully reacted with a trifunctional thiol crosslinker via thiol–ene coupling reaction to construct four different primary PEG hydrogels. These systems were used as scaffolds for the preparation of a library of sequential interpenetrating networks (SeqIPNs). The solid content of the secondary networks varied between 21 and 34% and was dependent on the length of the absorbing PEGs. The gel fractions for the IPNs were above 85%. Additionally, the lowest degree of swelling was found for the IPN based on 2‐kDa PEG (315%), whereas the 8‐kDa PEG IPN exhibited a value of 810%. The SeqIPN strategy facilitated hydrogel systems that cover a larger domain of tensile modulus (192–889 kPa) when compared with single hydrogel networks (175–555 kPa). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
A well‐defined triblock terpolymer, poly(ethylene glycol)‐block‐poly(allyl glycidyl ether)‐block‐poly(tert‐butyl glycidyl ether) (PEG‐b‐PAGE‐b‐Pt‐BGE), with a narrow molar mass distribution has been synthesized by sequential living anionic ring‐opening polymerization. Afterward, the PAGE block was modified via thiol‐ene chemistry and different sugar moieties or cysteine as a model compound for peptides could be covalently attached to the polymer backbone. The solution self‐assembly of the obtained bis‐hydrophilic triblock terpolymers in aqueous media has been studied in detail by turbidimetry, dynamic light scattering, and transmission electron microscopy (TEM and cryo‐TEM). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Pairs of polystyrene‐based random copolymers with balanced number of pendant basic or acidic groups were synthesized utilizing the template strategy. The same poly[(4‐hydroxystyrene)‐ran‐styrene] was used as a template backbone for modification. Two different synthetic approaches for the functionalization were applied. The first one involved direct functionalization of the template backbone through alkylation of the phenolic groups with suitable reagents. The second modification approach was based on “click” chemistry, where the introduction of alkyne groups onto the template backbone was followed by copper‐catalyzed 1,3 cycloaddition of aliphatic sulfonate‐ or amine‐contaning azides. Both synthetic approaches proved to be highly efficient as evidenced by 1H‐NMR analyses. The thermal properties were evaluated by differential scanning calorimetry and thermal gravimetric analyses and were influenced by the type of functionality and the modification method. The ether‐linked functional colopymers were thermally more stable than their “clicked” analogues. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2044–2052, 2010  相似文献   

15.
End group activation of polymers prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization was accomplished by conversion of thiocarbonylthio end groups to thiols and subsequent reaction with excess of a bismaleimide. Poly(N‐isopropylacrylamide) (PNIPAM) was prepared by RAFT, and subsequent aminolysis led to sulfhydryl‐terminated polymers that reacted with an excess of 1,8‐bismaleimidodiethyleneglycol to yield maleimido‐terminated macromolecules. The maleimido end groups allowed near‐quantitative coupling with model low molecular weight thiols or dienes by Michael addition or Diels‐Alder reactions, respectively. Reaction of maleimide‐activated PNIPAM with another thiol‐terminated polymer proved an efficient means of preparing block copolymers by a modular coupling approach. Successful end group functionalization of the well‐defined polymers was confirmed by combination of UV–vis, FTIR, and NMR spectroscopy and gel permeation chromatography. The general strategy proved to be versatile for the preparation of functional telechelics and modular block copolymers from RAFT‐generated (co)polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5093–5100, 2008  相似文献   

16.
A series of well‐defined amphiphilic graft copolymers bearing hydrophilic poly(ethylene oxide) (PEO) side chains with tunable grafting densities were synthesized by atom transfer nitroxide radical coupling (ATNRC) reaction using CuBr/PMDETA as catalytic system via the grafting‐onto strategy. PEO side chains were linked to α‐C of carbonyl of polyacrylate‐based backbone, not to the ester side groups as usual, so that every repeating unit of the backbone possessed a pendant steric bulky tert‐butyl group. The critical micelle concentrations of the obtained amphiphilic graft copolymers in aqueous media determined by fluorescence probe technique using pyrene as probe increased with the raising of molecular weights. These amphiphilic graft copolymers with novel chemical structure showed unprecedented diverse nanostructures visualized by transmission electron microscopy in aqueous media and micellar morphologies varied with the changing of experiment parameters. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
The increasing demand for bioderived polymers led us to investigate the potential use of the macrolactone globalide in thermoset synthesis via the photoinduced thiol–ene reaction. A series of six lipase‐catalyzed poly(globalide‐caprolactone) copolyesters bearing internal main‐chain unsaturations ranging from 10 to 50 and 100 mol % were successfully crosslinked in the melt with equal amounts of thiol groups from trimethylolpropane‐trimercapto propionate affording fully transparent amorphous elastomeric materials with different thermal and viscoelastic properties. Three major conclusions can be drawn from this study: (i) high thiol–ene conversions (>80%) were easily attained for all cases, while maintaining the cure behavior, and irrespective of functionality at reasonable reaction rates; (ii) parallel chain‐growth homopropagation of the ene monomer is insignificant when compared with the main thiol–ene coupling route; and (iii) high ene‐density copolymers result in much lower extracted sol fractions and high Tg values as a result of a more dense and homogeneous crosslinked network. The thiol–ene system evaluated in this contribution serve as model example for the sustainable use of naturally occurring 1,2‐disubstituted alkenes in making semisynthetic polymeric materials in high conversions with a range of properties. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012.  相似文献   

18.
Methacrylate‐based hydrogels, such as homo‐ and copolymers of 2‐hydroxyethyl methacrylate (HEMA), have demonstrated significant potential for use in biomedical applications. However, many of these hydrogels tend to resist cell attachment and growth at their surfaces, which can be detrimental for certain applications. In this article, glycidyl methacrylate (GMA) was copolymerized with HEMA to generate gels functionalized with epoxide groups. The epoxides were then functionalized by two sequential click reactions, namely, nucleophilic ring opening of epoxides with sodium azide and then coupling of small molecules and peptides via Huisgen's copper catalyzed 1,3‐dipolar cycloaddition of azides with alkynes. Using this strategy it was possible to control the degree of functionalization by controlling the feed ratio of monomers during polymerization. In vitro cell culture of human retinal pigment epithelial cell line (ARPE‐19) with the hydrogels showed improved cell adhesion, growth and proliferation for hydrogels that were functionalized with a peptide containing the RGD sequence. In addition, the cell attachment progressively decreased with increasing densities of the RGD containing peptide. In summary, a facile methodology has been presented that gives rise to hydrogels with controlled degrees of functionality, such that the cell response is directly related to the levels and nature of that functionality. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1781–1789  相似文献   

19.
20.
The thiol–ene radical addition reaction has been successfully used to synthesize polyphosphazene derivatives. Poly[bis(allylamino)phosphazene] with pendant allyl groups was reacted with different thiol reagents under UV irradiation. These thiol reagents include 1‐pentanethiol, 3‐mercaptopropionic acid, 3‐mercapto‐1,2‐propane‐diol, and 2,3,4,6‐tetra‐O‐acetyl‐1‐thio‐β‐D ‐glucopyranose. 1H NMR analyses confirm that the allyl polyphosphazene can be quantitatively modified by the mercaptans. In total, 100% conversion of the allyl groups was reached in <60 min toward the first three mercaptans, whereas about 80% conversion of the allyl groups was reached after 120‐min reaction toward the thioglucose. This method is a facile route for the synthesis of functional polyphosphazenes without the needs for protection/deprotection procedures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号