首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A molecularly imprinted polymer (MIP) based capacitive sensor for antibiotic detection in drinking water and milk has been developed on a gold coated silicon electrode (Au Electrode). The electrode was fabricated by electropolymerizing monomer resorcinol (RN) on Au surface in presence of sulphanilamide (SN) as a template molecule, to get insulated RN polymer antibiotic composite. The insulation of the polymer film was improved by incubation of electrode in 1‐Dodecanethiol solution. Subsequently MIP sensor was obtained by extraction of SN in ethanol and acetic acid solution. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements were performed for characterization of the developed MIP electrode at different steps of fabrication. The surface morphology of MIP electrode was characterized using atomic force microscopy (AFM), X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x‐ray spectroscopy (EDS). Performance of MIP sensor was evaluated by measuring change in capacitance against varying concentration of SN using EIS. A linear response in the range 1 to 200 μg L?1 SN was recorded for MIP sensor with a detection limit of 0.1 μg L?1. The developed MIP sensor exhibited good selectivity towards SN in water and milk with recoveries in the range 92 % to 105 %. The obtained results suggest the usability of MIP based sensor for SN estimation in water and milk samples.  相似文献   

2.
A novel strategy to improve the sensitivity of molecularly imprinted polymer (MIP) sensors was proposed for the determination of β2‐agonists. The imprinted sol‐gel film was prepared by mixing silica sol with a functional monomer of antimony‐doped tin oxide (ATO) and a template of β2‐agonists. ATO, which was embedded in the surface of the molecularly imprinted sol‐gel film, not only provides the excellent conductivity for biosensor but also increases the stability and the surface area of the MIP film. The imprinted sensor was characterised by field emission scanning electron microscope, fourier transform infrared spectroscopy and electrochemical methods. Under the optimal experimental conditions, the peak current was linear with the logarithm of the concentration of clenbuterol (CLB) in the range of 5.5 nM–6.3 µM, and a detection limit of 1.7 nM was obtained. Meanwhile, the electrochemical sensor showed excellent specific recognition of the template molecule among structurally similar coexisting substances. Furthermore, the proposed sensor was satisfactorily applied to determine β2‐agonists in human serum samples. The good results indicated that highly effective molecularly imprinted sol‐gel films doped with ATO can be employed for other analytes.  相似文献   

3.
In this study, a molecularly imprinted polymer (MIP) was synthesized by electrochemical polymerization and used to construct an electrochemical sensor for determination of meldonium (MEL) selectively for the first time. The polymer film was generated by using o‐phenylenediamine (o‐PD) as a monomer on the surface of carboxylic acid functionalized multiwalled carbon nanotube (MWCNT) modified pencil rod electrode in the presence of MEL as a template. MEL imprinted (MELimp) and non‐imprinted (N‐imp) polymer films and coated electrodes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), profilometry, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Voltammetric measurements were carried out in a ferrocyanide/ferricyanide redox probe solution for MELimp and N‐imp electrodes in the presence and absence of template molecule. The decrease in peak current of redox probe was linear with the concentration of MEL in the range of 0.1–5 μg/mL and the limit of detection (3 s/b) was found to be 0.066 μg/mL under optimized experimental conditions. The proposed sensor was successfully applied for selective determination of MEL in human urine sample with long term stability and good reproducibility.  相似文献   

4.
为了有效的分离富集水样中有机磷农药,以对硫磷为模板、三羟甲基丙烷三丙烯酸酯为交联剂,采用紫外聚合方法制备了对硫磷分子印迹聚合物(MIP)。利用紫外光谱、红外光谱研究了对硫磷与不同功能单体间作用力及印迹聚合物的结合位点。利用该MIP,建立MIP-固相萃取-气相色谱法测定水中痕量对硫磷,方法的检出限(3S/N)为0.48μg/L,加标回收率为86.2%~115.7%,相对标准偏差(n=6)为3.0%~6.6%。  相似文献   

5.
A monolithic fiber of molecularly imprinted polymer (MIP) was prepared by in situ polymerization within the capillary with an inner diameter of 530 µm. It was carried out in 8 min by microwave irradiation using malachite green (MG) as a template molecule, α‐methacrylic acid (MAA) as a functional monomer, acetonitrile (ACN) as a porogenic solvent, ethylene dimethacrylate (EDMA) as a crosslinker, azodiiso‐butyronitrile (AIBN) as a thermal initiator. The resulted MIP fibers were pushed out from the capillary, eluted and inserted in the capillary again, which successfully used for the solid phase microextraction (SPME) procedure. The factors affecting the extraction of MG, such as the molar ratio of template/monomer (MG/MAA), concentration of NaCl, extraction and desorption time, and extraction and desorption solvents were investigated in detail. The selectivity of the MIP fibers was compared using MG analogues crystal violet (CV) and non‐analogue Sudan II. It was also employed for the pretreatment of trace MG in the fish feed followed by high‐performance liquid chromatography (HPLC) detection. Under the optimal conditions, the linear range of MG was 10‐600 μg/L, the detection limit (LOD) was 1.23 μg/L and the recovery of spiked fish feed sample was 88.7~113.9%.  相似文献   

6.
This article describes for the first time the development of a new polymerization technique by introducing iniferter‐induced “living” radical polymerization mechanism into precipitation polymerization and its application in the molecular imprinting field. The resulting iniferter‐induced “living” radical precipitation polymerization (ILRPP) has proven to be an effective approach for generating not only narrow disperse poly(ethylene glycol dimethacrylate) microspheres but also molecularly imprinted polymer (MIP) microspheres with obvious molecular imprinting effects towards the template (a herbicide 2,4‐dichlorophenoxyacetic acid (2,4‐D)), rather fast template rebinding kinetics, and appreciable selectivity over structurally related compounds. The binding association constant Ka and apparent maximum number Nmax for the high‐affinity sites of the 2,4‐D imprinted polymer were determined by Scatchard analysis and found to be 1.18 × 104 M?1 and 4.37 μmol/g, respectively. In addition, the general applicability of ILRPP in molecular imprinting was also confirmed by the successful preparation of MIP microspheres with another template (2‐chloromandelic acid). In particular, the living nature of ILRPP makes it highly useful for the facile one‐pot synthesis of functional polymer/MIP microspheres with surface‐bound iniferter groups, which allows their direct controlled surface modification via surface‐initiated iniferter polymerization and is thus of great potential in preparing advanced polymer/MIP materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3217–3228, 2010  相似文献   

7.
A novel capacitive sensor based on electropolymerized molecularly imprinted polymer (MIP) for thiopental detection is described. The molecularly imprinted film as a recognition element was prepared by electropolymerization of phenol on a gold electrode in the presence of thiopental (template). Cyclic voltammetry and capacitive measurements were used for characterization and evaluation of the polymeric film. The template molecules were removed from the modified electrode surface by washing with an ethanol:water solution. The sensor’s linear response range was between 3 and 20 µM, with a detection limit of 0.6 µM. The proposed sensor exhibited good selectivity, reproducibility. Satisfactory results were obtained in the direct detection of real samples.  相似文献   

8.
An electrochemical creatinine sensor based on a molecularly imprinted polymer (MIP)‐modified sol‐gel film on graphite electrode was developed. The surface coating of MIP over sol‐gel was advantageous to obtain a porous film with outwardly exposed MIP cavities for unhindered selective rebinding of creatinine from aqueous and biological samples. A fast differential pulse, cathodic stripping voltammetric response of creatinine can be obtained after being preanodized the sensor in neutral medium containing appropriate amount of creatinine at +1.8 V versus SCE for 120 s. A linear response over creatinine concentration in the range of 1.23 to 100 μg mL?1 was exhibited with a detection limit of 0.37 μg mL?1 (S/N=3).  相似文献   

9.
Functional polystyrene (PS) crosslinked microbeads were developed by dispersion polymerization as fluorescent molecularly imprinted polymers (MIPs) having cavities with specific recognition sites. The functional azobenzene molecule modified with pyridine was self‐assembled with Pyrenebutyric acid (template molecules), and introduced during the second stage of dispersion polymerization of polystyrene. The template molecule was removed from MIP by Soxhlet using acetonitrile as solvent. Non imprinted polymer (NIP) having no template was also synthesized for comparative study. Fluorescence spectroscopy could be used as a tool to derive insight into the location of the template molecules on the MIP or NIP. The template molecules were adsorbed on the surface of the NIPs during binding studies, which was evidenced from the pyrene excimeric emission observed at 440 nm. The template binding efficiency of the NIPs were much lower compared to MIPs. Pyrene emission from MIP upon rebinding showed typical monomeric emission in the 375–395 nm range, confirming its location in isolated cavities. In rebinding studies of the template molecules, the MIPs selectively took up the template for which the cavity was designed, which demonstrated their selectivity towards template molecules. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1558–1565  相似文献   

10.
A new molecularly imprinted polymer for extraction of crocin from saffron stigmas was prepared using gentiobiose (a glycoside moiety in crocin structure) as a template. Crocin binding to gentiobiose imprinted polymer (Gent‐MIP) was studied in comparison with a blank nonimprinted polymer in aqueous media. Affinity of the Gent‐MIP for the crocin was more than the nonimprinted polymer at all concentrations. In Scatchard analysis, the number of binding sites in each gram of polymer (maximum binding sites) and dissociation constant of crocin to binding sites were 18.4 μmol/g polymer and 11.2 μM, respectively. The Gent‐MIP was then used as the sorbent in an SPE method for isolation and purification of crocin from methanolic extract of saffron stigmas. The recovery of crocin, safranal and picrocrocin was determined in washing and elution steps. The Gent‐MIP had significantly higher affinity for crocin than other compounds and enabled selective extraction of crocin with a high recovery (84%) from a complex mixture. The results demonstrated the possibility of using a part of a big molecule in preparing a molecularly imprinted polymer with a good selectivity for the main structure.  相似文献   

11.
A novel strategy for preparing highly sensitive and easily renewable molecularly imprinted polymer (MIP) sensors was proposed. Using melamine (MA) as the template molecule, MIP particles were synthesized and embedded in a solid paraffin carbon paste to prepare the MIP sensor. MA was indirectly determined from the competition between the reactions of MA and horseradish peroxidase-labeled MA (MA-HRP) with the vacant cavities. The detection signals were amplified because of enzymatic reaction to the H2O2 catalytic oxidation. Sensitivity was markedly improved. Sensor renewal was achieved by a simple mechanical polishing of the sensitive film. The linear range for MA detection was 0.005–1 μmol L−1 and the detection limit was 0.7 nmol L−1. The molecularly imprinted solid paraffin carbon paste sensor was used for MA detection in milk samples.  相似文献   

12.
A facile, general, and highly efficient one‐pot approach to obtain azobenzene (azo)‐containing molecularly imprinted polymer (MIP) nanoparticles with photoresponsive template binding and release properties in aqueous media is described, which involves the combined use of hydrophilic macromolecular chain transfer agent‐mediated reversible addition‐fragmentation chain transfer precipitation polymerization and easily available water‐insoluble azo functional monomers. The resulting azo‐containing MIPs were characterized with dynamic laser scattering (DLS), SEM, FTIR, static contact angle and water dispersion studies, and equilibrium binding experiments. They have proven to be nanoparticles (their diameters being around 104–397 nm, as determined by DLS in methanol) with surface‐grafted hydrophilic polymer brushes and exhibit excellent pure water‐compatible template binding properties. Moreover, obvious photoregulated template binding behaviors were observed for such azo‐containing MIP nanoparticles, which led to their largely accelerated template release in the aqueous media under the UV light irradiation. Furthermore, the general applicability of the strategy was also demonstrated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1941–1952  相似文献   

13.
Wang Z  Li H  Chen J  Xue Z  Wu B  Lu X 《Talanta》2011,85(3):1672-1679
A novel electrochemical sensor based on molecularly imprinted polymer film has been developed for aspirin detection. The sensitive film was prepared by co-polymerization of p-aminothiophenol (p-ATP) and HAuCl(4) on the Au electrode surface. First, p-ATP was self-assembled on the Au electrode surface by the formation of Au-S bonds. Then, the acetylsalicylic acid (ASA) template was assembled onto the monolayer of p-ATP through the hydrogen-bonding interaction between amino group (p-ATP) and oxygen (ASA). Finally, a conductive hybrid membrane was fabricated at the surface of Au electrode by the co-polymerization in the mixing solution containing additional p-ATP, HAuCl(4) and ASA template. Meanwhile, the ASA was spontaneously imprinted into the poly-aminothiophenol gold nanoparticles (PATP-AuNPs) complex film. The amount of imprinted sites at the PATP-AuNPs film significantly increases due to the additional replenishment of ASA templates. With the significant increasing of imprinted sites and doped gold nanoparticles, the sensitivity of the molecular imprinted polymer (MIP) electrode gradually increased. The molecularly imprinted sensor was characterized by electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and cyclic voltammetry (CV). The linear relationships between current and logarithmic concentration were obtained in the range from 1 nmol L(-1) to 0.1 μmol L(-1) and 0.7 μmol L(-1) to 0.1 mmol L(-1). The detection limit of 0.3 nmol L(-1) was achieved. This molecularly imprinted sensor for the determination of ASA has high sensitivity, good selectivity and reproducibility, with the testing in some biological fluids also has good selectivity and recovery.  相似文献   

14.
分子印迹聚合物修饰电化学晶体管检测抗坏血酸分子   总被引:1,自引:0,他引:1  
以抗坏血酸(AA)为模板分子、邻苯二胺(o-PD)为功能单体,在金电极表面电聚合制备分子印迹聚合物膜(MIP),并以该MIP修饰的电极为栅极制备了具有高选择性、高灵敏度的AA电化学晶体管(OECT)传感器件。应用循环伏安法(CV)、交流阻抗法(EIS)对分子印迹聚合物电极进行一系列的表征与检测。实验结果表明:以pH=5.2,浓度为0.2mol/L HAc-NaAc(体积比2.1∶7.9)的缓冲液为背景溶液,o-PD与AA的物质的量之比为1∶2,以0.5V/s的扫描速率在0~0.8V内扫描20圈,所得分子印迹膜电极性能最佳。应用以该分子印迹修饰电极作为栅极的电化学晶体管检测AA,得到AA浓度的检测限为0.3μmol/L,沟道电流与AA浓度在0.3~3μmol/L(低浓度)与3~100μmol/L(高浓度)这2个范围内成线性关系。  相似文献   

15.
An efficient novel method for the synthesis of a covalent molecularly imprinted polymer (MIP) highly specific to β‐estradiol have been developed. MIP prepared by both covalent and non covalent techniques, demonstrated high selectivity toward β‐estradiol. MIPs were synthesized by radical polymerization of 17‐β‐estradiol 4‐vinyl‐benzene carboxyl or sulfonyl esters used as covalent functional monomers, methacrylic acid as noncovalent functional monomer, ethylene glycol dimethacrylate as crosslinking agent, and acetonitrile as swelling and porogenic component. Almost 35% (w/w) of 17‐β‐estradiol was successfully removed from the polymer network by basic hydrolysis. The binding ability of MIP was 10.73 μg/mg MIP following removal of 17‐β‐estradiol in the 2 mg/mL β‐estradiol solution. Selective rebinding of β‐estradiol toward MIP was tested in the presence of competitive binders including estrone, 19‐nortestosterone, epiandrosterone, and cholesterol. Estrone having closest similar chemical structure to β‐estradiol exhibited only 0.6 μg/mg MIP competitive binding, being exposed to equivalent concentrations. Moreover, other competitive steroids demonstrated negligible affinity toward MIP indicating high selectivity of novel MIP system toward β‐estradiol. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5534–5542, 2009  相似文献   

16.
A different molecularly imprinted composite film with the exploit of computational design is synthesized. The proposed composite is used for electrode modification to determine morphine. The ratio of monomer to template in optimum condition was obtained 4. The modification of the electrode was achieved by electropolymerizing L‐lysine in the presence of morphine on the surface of sodium alginate and activated carbon (SA‐AC) on glassy carbon electrode (GCE). The SA‐AC composite with special surface area suits for making sensitive sensors. Morphine showed an anodic peak in buffer solution of phosphate (pH=6.0) on MIP/SA‐AC/GCE. The optimization of the practical factors on the response and electrochemical behavior of template morphine on the modified electrode were precisely surveyed. The DPV outcomes exhibit high sensitivity for morphine detection within 0.1–1000.0 μM and limit of detection as 48 nM (S/N=3). The application of this disposable sensor in the case of urine samples was quite satisfactory.  相似文献   

17.
In this work, two different surface imprinting formats have been evaluated using thiabendazole (TBZ) as model template. The first format is a thin film of molecularly imprinted polymer (MIP) grafted from preformed silica particles using an immobilized iniferter‐type initiator (inif‐MIP). The second format is molecularly imprinted polymer microspheres with narrow particle size distribution and core‐shell morphology prepared by precipitation polymerization in a two‐step procedure. For the latter format, polymer microspheres (the core particles) were obtained by precipitation polymerization of divinylbenzene‐80 (DVB‐80) in acetonitrile. Thereafter, the core particles were used as seed particles in the synthesis of MIP shells by copolymerization of DVB‐80 and methacrylic acid in the presence of TBZ in a mixed solvent porogen (acetonitrile/toluene). The materials were characterized by elemental microanalysis, nitrogen sorption porosimetry and scanning (and transmission) electron microscopy. Thereafter, the imprinted materials were assessed as stationary phases in liquid chromatography. From this study it can be concluded that grafted MIP beads can be obtained in a simple and direct manner, consuming only a fraction of the reagents used typically to prepare imprinted particles from a monolithic imprinted polymer. Such materials can be used in the development of in‐line molecularly imprinted solid‐phase extraction methods. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1058–1066, 2010  相似文献   

18.
Liu R  Guan G  Wang S  Zhang Z 《The Analyst》2011,136(1):184-190
To convert the binding events on molecularly imprinted polymers (MIPs) into physically detectable signals and to extract the templates completely are the great challenges in developing MIP-based sensors. In this paper, a core-shell nanostructure was employed in constructing the MIP chemosensor for the improvements of template extraction efficiency and imprinted sites accessibility. Vinyl-substituted zinc(II) protoporphyrin (ZnPP) was used as both fluorescent reporter and functional monomer to synthesize atrazine-imprinted polymer shell at silica nanoparticle cores. The template atrazine coordinates with the Lewis acid binding site Zn of ZnPP to form a complex for the molecular imprinting polymerization. These imprinted sites are located in polymer matrix of the thin shells (~8 nm), possessing better accessibility and lower mass-transfer resistance for the target molecules. The fluorescence properties of ZnPP around the imprinted sites will vary upon rebinding of atrazine to these imprinted sites, realizing the conversion of rebinding events into detectable signals by monitoring fluorescence spectra. This MIP probe showed a limit of detection (LOD) of about 1.8 μM for atrazine detection. The core-shell nanostructured MIP method not only improves the sensitivity, but also shows high selectivity for atrazine detection when compared with the non-molecular imprinted counterparts.  相似文献   

19.
The quartz crystal microbalance/heat conduction calorimeter (QCM/HCC) is a versatile instrument coupling both gravimetric and calorimetric techniques. The QCM/HCC is used to probe vapor sorption in thin films. Three parameters are measured simultaneously as a thin film undergoes vapor sorption, namely: mass changes in the film (±10 ng), corresponding thermal effects upon vapor sorption (±100 nW), and motional resistance (±0.5Ω) changes within the film. A range of film thicknesses (0.75 to 8.5 μm) of the polymer, Tecoflex? are cast on QCMs and the interaction of each film with ethanol and water is determined. From the direct calorimetric measurements, sorption enthalpies (ΔsorptionH kJ/mol) are determined for the film–vapor interactions. Sorption isotherms are then analyzed for each film. The isotherms shown here generally display a linear Henry's Law dissolution relationship between the vapor pressure and the amount of vapor sorbed into the film. Motional resistance data provides a window to view viscoelastic effects of the polymer films upon vapor sorption. Motional resistance data are compared for ethanol sorption in a relatively thin (0.75 μm) and thicker (8.5 μm) Tecoflex? film. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3893–3906, 2004  相似文献   

20.
《Electroanalysis》2006,18(11):1097-1104
Copolymerization of an osmium(II) functionalized pyrrole moiety, osmium‐bis‐N,N'‐(2,2′‐bipyridyl)‐N‐(pyridine‐4‐ylmethyl‐(8‐pyrrole‐1yl–octyl)‐amine)chloride ( I ) with 3‐methylthiophene was carried out. The resulting conducting polymer film exhibited a clear redox couple associated with the Os3+/2+ response and the familiar conducting polymer backbone signature. The effect of film thickness upon the redox properties of the copolymer was investigated in organic electrolyte solutions. Scanning electron micrographs (SEM) along with energy dispersive X‐ray (EDX) spectra of the copolymerized films were undertaken, both after formation and redox cycling in neutral buffer solution. These clearly show that electrolyte is incorporated into the polymer film upon redox cycling through the Os3+/2+ redox system. The Os3+/2+ response associated with the copolymer was seen to be significantly altered in the presence of ascorbic acid both in acidic and neutral pH buffer solutions. This pointed to an electrocatalytic reaction between the ascorbic acid and the Os3+ form of the copolymer. Under acidic conditions the copolymer film exhibited a sensitivity of 1.76 (±0.05) μA/mM with a limit of detection (LOD) of 1.45 μM for ascorbic acid. Under neutral pH conditions the copolymer exhibited a sensitivity of 19.26 (±1.05) μA/mM with a limit of detection (LOD) of 1.28 μM for ascorbic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号