首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excited state structural dynamics of 4‐cyanobenzaldehyde (p‐CNB) were studied by using the resonance Raman spectroscopy and the quantum mechanical calculations. The experimental A‐ and B‐band absorptions were, respectively, assigned to the major nO → π3* and π2 → π3* transitions according to the B3LYP‐TD/6‐31G(d) and CIS/6‐31G(d) computations, and the resonance Raman spectra. It was determined that the actual S22π3) state was in energy lower than S31π3), which was just opposite to the B3LYP‐TD/6‐31G(d) calculated order of the S21π3) and S32π3). The vibrational assignments were carried out for the A‐ and B‐band resonance Raman spectra. The B‐band resonance Raman intensities of p‐CNB were dominated by the C2–C3/C5–C6 symmetric stretch mode ν8, the overtones nν8 and their combination bands with the ring C–H bend mode ν17, the C9–N10 stretch mode ν6, the C7–O8 stretch mode ν7 and the remaining modes. The conical intersection between S1(nOπ3) and S22π3) states of p‐CNB was determined at complete active space self‐consistent field (CASSCF)(8,7)/6‐311G(d,p) level of theory. The B‐band short‐time structural dynamics and the corresponding decay dynamics of p‐CNB were obtained by analysis of the resonance Raman intensity pattern and CASSCF computations. The resonance Raman spectra indicated that CI[S1(nOπ3)/S21π2π3π4)] located nearby the Franck–Condon region. The excited state decay dynamics evolving from the S2, FC2π3) to the S1(nOπ3) state was proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This paper reviews our results on femtosecond time‐resolved spectroscopy (transient absorption, transient‐grating and fluorescence spectroscopy) to study the photophysics and photochemistry of the two very important biological photoreceptor chromophores phycocyanobilin (PCB) and protochlorophyllide a (PChla). The compound PCB serves as a model chromophore for the photoreceptor phytochrome. By means of transient‐grating spectroscopy where the excitation wavelength was varied ove r the spectral region of the S0S1‐absorption the ultrafast processes were studied upon excitation with varying excess energy delivered to the system. On the basis of the results obtained, both the rate of the photoreaction in PCB and the rate of the decay of different excited‐state species via different decay channels depend on the excitation wavelength. Furthermore, transient absorption experiments illuminating the excited‐state dynamics of PChla, a porphyrin‐like compound and, as substrate of the NADPH/protochlorophyllide oxidoreductase (POR), a precursor of the chlorophyll biosynthesis are presented. In addition to pump‐energy‐dependent measurements performed with PChla dissolved in methanol, the excited‐state dynamics of PChla was interrogated in different solvents that were chosen to mimic different environmental conditions. In addition to the femtosecond time‐resolved absorption experiments the picosecond time‐resolved fluorescence of the system was studied. The transient absorption and tim e‐resolved fluorescence data allow suggesting a detailed model for the excited‐state relaxation of PChla describing the excited‐state processes in terms of a branching of the initially excited state population into a reactive and nonreactive path. Thus, the excited‐state potential energy surface exhibits two distinct S1 and Sx minima separated from the Franck–Condon region along two most likely orthogonal reaction coordinates. Finally, the model derived is related to models suggested to acco unt for the reduction of PChla to chlorophyllide a within the natural enzymatic environment of POR.  相似文献   

3.
Spectroscopic studies on excited‐state proton transfer of a new chromophore 2‐(2′‐benzofuryl)‐3‐hydroxychromone (BFHC) have been reported recently. In the present work, based on the time‐dependent density functional theory (TD‐DFT), the excited‐state intramolecular proton transfer (ESIPT) of BFHC is investigated theoretically. The calculated primary bond lengths and angles involved in hydrogen bond demonstrate that the intramolecular hydrogen bond is strengthened. In addition, the phenomenon of hydrogen bond reinforce has also been testified based on infrared (IR) vibrational spectra as well as the calculated hydrogen bonding energies. Further, hydrogen bonding strengthening manifests the tendency of excited state proton transfer. Our calculated results reproduced absorbance and fluorescence emission spectra of experiment, which verifies that the TD‐DFT theory we used is reasonable and effective. The calculated Frontier Molecular Orbitals (MOs) further demonstrate that the excited state proton transfer is likely to occur. According to the calculated results of potential energy curves along O―H coordinate, the potential energy barrier of about 14.5 kcal/mol is discovered in the S0 state. However, a lower potential energy barrier of 5.4 kcal/mol is found in the S1 state, which demonstrates that the proton transfer process is more likely to happen in the S1 state than the S0 state. In other words, the proton transfer reaction can be facilitated based on the photo‐excitation effectively. Moreover, the phenomenon of fluorescence quenching could be explained based on the ESIPT mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The short‐time structural dynamics of 4‐formaldehyde imidazole and imidazole in light absorbing S2(ππ*) state were studied by using resonance Raman spectroscopy and quantum mechanical calculations. The vibrational spectra and ultraviolet absorption spectra of 4‐formaldehyde imidazole were assigned. The resonance Raman spectra of imidazole and 4‐formaldehyde imidazole were obtained in methanol and acetonitrile with excitation wavelengths in resonance with the first intense absorption band to probe the short‐time structural dynamics. complete active space self‐consistent field calculations were carried out to determine the minimal singlet excitation energies and structures of S1(nπ*), S2(ππ*), and conical intersection point S1(nπ*)/S2(ππ*). The results show that the A‐band structural dynamics of imidazole is predominantly along the N1H/C4H/C5H/C2H in‐plane bending reaction coordinate, which suggests that excited state proton or hydrogen transfer reaction takes place somewhere nearby the Franck–Condon region. The significant difference in the short‐time structural dynamics between 4‐formaldehyde imidazole and imidazole is observed, and the underlying mechanism is interpreted in term of excited state charge redistribution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The acylation of lithium (±)‐spiro‐γ‐lactone enolate 5 by the O‐protected methyl (?)‐(S)‐lactate or the O‐protected methyl (+)‐(S)‐mandelate occurs through enantio‐differentiating reactions. The (S,S)‐enolate 5 is the most reactive with the lactate whereas the (R,R)‐enolate 5 selectively reacts with the mandelate. According to theoretical calculations at the B3LYP/6‐31G(++)(d,p) level of theory of 40 intermediates of this Claisen condensation, the experimental results are compatible with a previous chelation of the ester by an auxiliary cation lithium arising from the medium. The addition reaction occurs through a chelation process mediated by the counterion of the enolate. More stable tetrahedral intermediates including two lithium cations result from an antiperiplanar transition state. These results clearly demonstrate that the presence of a second lithium cation (the first lithium cation is solvated by di‐isopropylamine and the second one is solvated by a THF molecule or a di‐isopropylamide anion) stabilizes the tetrahedral intermediate and is compatible with an antiperiplanar transition state according to the Felkin–Anh model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The vibronic coupling between the first excited S1 (21Ag) and the second excited S2 (11Bu) singlet electronic states in spectroscopy of trans‐1,3,5‐hexatriene molecule is investigated on the basis of a model consisting of two electronic states coupled by two vibrational modes. Employing a perturbation theory that treats the intramolecular couplings in a perturbative manner, the absorption and resonance Raman cross sections and excitation profiles of this molecule are calculated using the time‐correlation function formalism. The non‐Condon corrections are included in evaluation of cross sections. The multidimensional time‐domain integrals that arise in these calculations have been evaluated for the case in which S0 (11Ag) S2 (11Bu) electronic transition takes place between displaced and distorted harmonic potential energy surfaces. The calculated spectra are in good agreement with the experimental ones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The cycloaddition between glyoxylate imines possessing two chiral auxiliaries, N‐(R)‐ or N‐(S)‐1‐phenylethyl and 8‐phenylmenthyl or 8‐phenylneomenthyl, and cyclopentadiene is described. Computational calculations using density functional theory with the Becke, three‐parameter, Lee–Yang–Parr functional and the 6‐31G(d) basis set were performed to better understand the highly diastereoselective mechanism and the exo‐selectivity observed experimentally for these ionic aza‐Diels–Alder reactions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Symmetric‐type carbazole derivatives show great potential for application in two‐photon absorption (TPA) materials and organic light‐emitting diodes. The absorption spectra and fluorescence emission spectra of three different N‐alkyl symmetric‐type carbazole derivatives were investigated. The density functional theory (DFT) time‐dependent‐DFT//Becke, three‐parameter, Lee–Yang–Parr/6‐31 G* method has been used to theoretically study one‐photon absorption properties. The computational results are in good agreement with the available experimental values. The two‐photon excited fluorescence of the compounds was surveyed by 120 fs pulse at 790 nm Ti: sapphire laser operating at 1 kHz repetition rate. Two‐photon excited fluorescence was obtained in the range of 380–600 nm, and TPA cross‐sections were calculated. The TPA properties of the series of compounds were investigated by the ZINDO/single and double electronic excitation configuration interaction method. The influence of the chemical structure of the compounds on two‐photon optical properties was discussed. The results show how the different changes in one‐photon absorption and TPA properties on the basis of lengthening the conjugated bridge and the different carbazole N‐alkyl substituents are attributed to the transition dipole moment in the excited process. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The photophysics of 3‐methyl‐3‐pentene‐2‐one (3M3P2O) after excitation to the S2(ππ*) electronic state were studied using the resonance Raman spectroscopy and complete active space self‐consistent field (CASSCF) method calculations. The A‐band resonance Raman spectra were obtained in cyclohexane, acetonitrile, and methanol with excitation wavelengths in resonance with the first intense absorption band to probe the structural dynamics of 3M3P2O. The B3LYP‐TD/6‐31++G(d, p) computation was carried out to determine the relative A‐band resonance Raman intensities of the fundamental modes, and the result was used to reproduce the corresponding fundamental band intensities of the 223.1 nm resonance Raman spectrum and thus to examine whether the vibronic‐coupling existed in Franck‐Condon region or not. CASSCF calculations were carried out to determine the minimal singlet excitation energies of S1, FC, S1,min (nπ*), S2, FC, S2,min (ππ*), the transition energies of the conical intersection points Sn/Sπ, Sn/S0, and the optimized excited state geometries as well as the geometry structures of the conical intersection points. The A‐band short‐time structural dynamics and the corresponding decay dynamics of 3M3P2O were obtained by the analysis of the resonance Raman intensity pattern and CASSCF computations. It was revealed that the initial structural dynamics of 3M3P2O was towards the simultaneous C3=C4 and C2=O7 bond elongation, with the C3=C4 bond length lengthening greater at the very beginning, whereas the C2=O7 bond length changing greater at the later evolution time before reaching the CI(S2/S1) conical intersection point. The decay dynamics from S2(ππ*) to S1(nπ*) via S2(ππ*)/S1(nπ*) in singlet realm and from S1(nπ*) to T1(nπ*) via ISC[S1(nπ*)/T2(ππ*)/T1(nπ*)] in triplet realm are proposed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The time‐dependent density functional theory (TDDFT) method has been performed to investigate the excited state and hydrogen bonding dynamics of a series of photoinduced hydrogen‐bonded complexes formed by (E)‐S‐(2‐aminopropyl) 3‐(4‐hydroxyphenyl)prop‐2‐enethioate with water molecules in vacuum. The ground state geometric optimizations and electronic transition energies as well as corresponding oscillator strengths of the low‐lying electronic excited states of the (E)‐S‐(2‐aminopropyl) 3‐(4‐hydroxyphenyl)prop‐2‐enethioate monomer and its hydrogen‐bonded complexes O1‐H2O, O2‐H2O, and O1O2‐(H2O)2 were calculated by the density functional theory and TDDFT methods, respectively. It is found that in the excited states S1 and S2, the intermolecular hydrogen bond formed with carbonyl oxygen is strengthened and induces an excitation energy redshift, whereas the hydrogen bond formed with phenolate oxygen is weakened and results in an excitation energy blueshift. This can be confirmed based on the excited state geometric optimizations by the TDDFT method. Furthermore, the frontier molecular orbital analysis reveals that the states with the maximum oscillator strength are mainly contributed by the orbital transition from the highest occupied molecular orbital to the lowest unoccupied molecular orbital. These states are of locally excited character, and they correspond to single‐bond isomerization while the double bond remains unchanged in vacuum.  相似文献   

11.
The gas‐phase elimination of 1,1‐dimethoxycyclohexane yielded 1‐methoxy‐1‐cyclohexene and methanol. The kinetics were determined in a static system, with the vessels deactivated with allyl bromide, and in the presence of the free radical inhibitor cyclohexene. The working temperature was 310–360 °C and the pressure was 25–85 Torr. The reaction was found to be homogeneous, unimolecular, and follows a first‐order rate law. The temperature dependence of the rate coefficients is given by the following Arrhenius equation: log k(s?1) = [(13.82 ± 0.07) – (193.9 ± 1.0)(kJ mol?1)](2.303RT)?1; r = 0.9995. Theoretical calculations were carried out using density functional theory (DFT) functionals B3LYP, MPW1PW91, and PBE with the basis set 6‐31G(d,p) and 6‐31G++(d,p). The calculated values for the energy of activation and enthalpy of activation are in reasonably good agreement with the experimental values using the PBE/6‐31G (d,p) level of theory. Both experimental results and theoretical calculations suggest a molecular mechanism involving a concerted polar four‐membered cyclic transition state. The transition state structure of methanol elimination from 1,1‐dimethoxycyclohexane is characterized by a significantly elongated C? O bond, while the Cβ? H bond is stretched to a smaller extent, as compared to the reactant. The process can be described as moderately asynchronic with some charge separation in the TS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, we mainly focus on the excited‐state intramolecular proton transfer mechanism of a new molecule 9,10‐dihydroxybenzo[h]quinoline (9‐10‐HBQ). Within the framework of density functional theory and time‐dependent density functional theory methods, we have theoretically investigated its excited‐state dynamical process and our theoretical results successfully reappeared previous experimental electronic spectra. The ultrafast excited‐state intramolecular proton transfer process occurs in the first excited state (S1 state) forming 9‐10‐HBQ‐PT1 structure without potential energy barrier along with hydrogen bond (O3–H4···N5). Then the second proton may transfer via another intramolecular hydrogen bonded wire (O1–H2···N3) with a moderate potential energy barrier (about 7.69 kcal/mol) in the S1 state forming 9‐10‐HBQ‐PT2 configuration. After completing excited‐state dynamical process, the molecule on the first excited electronic state would come back to the ground state. We not only clarify the excited‐state dynamical process for 9‐10‐HBQ but also put forward new predictions and successfully explain previous experimental results.  相似文献   

13.
Excited‐state intermolecular or intramolecular proton transfer (ESIPT) reaction has important potential applications in biological probes. In this paper, the effect of benzo‐annelation on intermolecular hydrogen bond and proton transfer reaction of the 2‐methyl‐3‐hydroxy‐4(1H)‐quinolone (MQ) dye in methanol solvent is investigated by the density functional theory and time‐dependent density functional theory approaches. Both the primary structure parameters and infrared vibrational spectra analysis of MQ and its benzo‐analogue 2‐methyl‐3‐hydroxy‐4(1H)‐benzo‐quinolone (MBQ) show that the intermolecular hydrogen bond O1―H2?O3 significantly strengthens in the excited state, whereas another intermolecular hydrogen bond O3―H4?O5 weakens slightly. Simulated electron absorption and fluorescence spectra are agreement with the experimental data. The noncovalent interaction analysis displays that the intermolecular hydrogen bonds of MQ are obviously stronger than that of MBQ. Additionally, the energy profile analysis via the proton transfer reaction pathway illustrates that the ESIPT reaction of MBQ is relatively harder than that of MQ. Therefore, the effect of benzo‐annelation of the MQ dye weakens the intermolecular hydrogen bond and relatively inhibits the proton transfer reaction.  相似文献   

14.
The gas‐phase elimination kinetics of the title compounds were carried out in a static reaction system and seasoned with allyl bromide. The working temperature and pressure ranges were 200–280 °C and 22–201.5 Torr, respectively. The reactions are homogeneous, unimolecular, and follow a first‐order rate law. These substrates produce isobutene and corresponding carbamic acid in the rate‐determining step. The unstable carbamic acid intermediate rapidly decarboxylates through a four‐membered cyclic transition state (TS) to give the corresponding organic nitrogen compound. The temperature dependence of the rate coefficients is expressed by the following Arrhenius equations: for tert‐butyl carbamate logk1 (s?1) = (13.02 ± 0.46) – (161.6 ± 4.7) kJ/mol(2.303 RT)?1, for tert‐butyl N‐hydroxycarbamate logk1 (s?1) = (12.52 ± 0.11) – (147.8 ± 1.1) kJ/mol(2.303 RT)?1, and for 1‐(tert‐butoxycarbonyl)‐imidazole logk1 (s?1) = (11.63 ± 0.21)–(134.9 ± 2.0) kJ/mol(2.303 RT)?1. Theoretical studies of these elimination were performed at Møller–Plesset MP2/6‐31G and DFT B3LYP/6‐31G(d), B3LYP/6‐31G(d,p) levels of theory. The calculated bond orders, NBO charges, and synchronicity (Sy) indicate that these reactions are concerted, slightly asynchronous, and proceed through a six‐membered cyclic TS type. Results for estimated kinetic and thermodynamic parameters are discussed in terms of the proposed reaction mechanism and TS structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The photochemistry of pivaloyl, benzoyl, 4‐phenylbenzoyl, and 2‐anthroyl azides has been studied using femtosecond (fs) time‐resolved infrared (TRIR) and UV–vis spectroscopy and interpreted with the aid of computational chemistry. Density functional theory calculations revealed a significant difference in the nature of the lowest singlet excited state for these carbonyl azides. The lowest singlet excited states (S1) of p‐phenylbenzoyl and 2‐anthroyl azides are (π,π*) in nature, while the pivaloyl and benzoyl azides S1 states involve (n,π*) excitations. Nevertheless, for all acyl azides studied here, a similar, and intense, IR band at about 2100 cm?1 has been detected in the ultrafast TRIR experiments following 270 nm excitation. These bands were shifted to lower energy by about 100 cm?1 relative to the N3 stretching mode for the ground states of these azides. These 2100 cm?1 vibrational bands were assigned to the S1 states of acyl azides in agreement with density functional theory calculations. The decay of the acyl azide S1 states was described by bi‐exponential functions. The fast component was attributed to the decay of the hot S1 state and the longer component to the decay of the thermally relaxed S1 state. A strong and broad transient absorption in the 350–650 nm spectral range was observed in the fs UV–vis experiments for p‐phenylbenzoyl and 2‐anthroyl azides. The carrier of this absorption also decayed bi‐exponentially, and the time constants were in excellent agreement with those found in the fs TRIR experiments. The slow component of the S1 state decay was found to be dependent on the solvent polarity. When the lifetime of the acyl azide S1 state is substantially longer than the time constant for vibrational cooling of nascent (hot) isocyanate, the correlation between the S1 decay and isocyanate formation was clear. The 270 nm excitation populates the Sn (n ≥ 2) states of these acyl azides. It was established that a hot nitrene is produced more efficiently from both the Sn and hot S1 states than from the relaxed S1 state of these acyl azides. Thus, time‐resolved study provides direct experimental evidence that the S1 state is the precursor of nitrene only when the S1 state is pumped directly and when the S1 state lifetime is longer than the time constant of vibrational cooling of the newborn nitrene. All of these results are consistent with the data obtained recently for 2‐napththoyl azide. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Three derivatives of alkyl anthracene covalently bonded to aza‐18‐crown‐6 at the nitrogen position, anthracene(CH2)n, (n = 1–3) which act as an on–off fluorogenic photoswitch have been theoretically studied using a computational strategy based on density functional theory at B3LYP/6‐31 + G(d,p) method. The fully optimized geometries have been performed with real frequencies which indicate the minima states. The binding energies, enthalpies and Gibbs free energies have been calculated for aza‐18‐crown‐6 ( L ) and their metal complexes. The natural bond orbital analysis is used to explore the interaction of host–guest molecules. The absorption spectra differences between L and their metal ligands, the excitation energies and absorption wavelength for their excited states have been studied by time‐dependent density functional theory with the basis set 6‐31 + G(d,p). These fluorescent sensors and switchers based on photoinduced electron transfer mechanism have been investigated. The PET process from aza‐crown ether to fluorophore can be suppressed or completely blocked by the entry of alkali metal cations into the aza‐crown ether‐based receptor. Such a suppression of the PET process means that fluorescence intensity is enhanced. The binding selectivity studies of the aza‐crown ether part of L indicate that the presence of the alkali metal cations Li+, Na+ and K+ play an important role in determining the internal charge transfer and the fluorescence properties of the complexes. In addition, the solvent effect has been investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Resonance Raman (RR) spectra of free‐base meso‐tetra(p‐hydroxyphenyl)porphine(THPP) were obtained with 397.9, 416 and 514 nm excitation wavelengths, and density functional calculations were carried out to help the elucidation of the photorelaxation dynamics of Soret (Bx and By bands) electronic transitions and the RR spectra of THPP. The RR spectrum indicates that the Franck–Condon (FC) region photorelaxation dynamics for the S0S5 excited electronic state is predominantly along the totally symmetric Cm phC stretching and the CβCβ stretchingand simultaneously along the asymmetric (CmCα)as stretching, ν(phC  C)asstretching, δ(NH)s and γ(CβH) vibrational relaxation processes, while that for S0S4 electronic state is predominantly along the Cm phC stretching and pyrrole breathing. The excited‐state structural dynamics of THPP determined from the RR spectra shows that internal conversion (IC) ByBx electronic relaxation occurs in tens of femtoseconds, and the short‐time dynamics is interpreted using the time‐dependent wave packet theory and Herzberg–Teller (vibronic coupling) contributions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Theoretical design on a new molecular switch and fluorescent chemosensor double functional device of aza‐crown ether (2,2′‐dipyridine‐embedded N‐(9‐anthraceneyl(pyrenyl)methyl)aza‐15‐crown‐5) was explored. The interactions between ligands and a series of alkaline earth metal cations (Mg2+, Ca2+, Sr2+, and Ba2+) were investigated. The fully optimized geometry structures of the free ligands ( L 1, L 2) and their metal cation complexes ( L 1/M2+, L 2/M2+) were calculated with the B3LYP/6‐31G(d) method. The natural bond orbital analysis, which is based on optimized geometric structures, was used to explore the interaction of L 1/M2+, L 2/M2+ molecules. The absorption spectra of L 1, L 2, L 1/M2+, and L 2/M2+, and their excited states were studied by time‐dependent density functional theory. A new type molecular device L 2(2,2′‐dipyridine‐embedded N‐(9‐pyrenyl methyl)aza‐15‐crown‐5) is designed, which not only has the selectivity for Sr2+, and construct allosteric switch, but also has fluorescent sensor performance.  相似文献   

19.
The B‐band resonance Raman spectra of 2(1H)‐pyridinone (NHP) in water and acetonitrile were obtained, and their intensity patterns were found to be significantly different. To explore the underlying excited state tautomeric reaction mechanisms of NHP in water and acetonitrile, the vibrational analysis was carried out for NHP, 2(1D)‐pyridinone (NDP), NHP–(H2O)n (n = 1, 2) clusters, and NDP–(D2O)n (n = 1, 2) clusters on the basis of the FT‐Raman experiments, the B3LYP/6‐311++G(d,p) computations using PCM solvent model, and the normal mode analysis. Good agreements between experimental and theoretically predicted frequencies and intensities in different surrounding environments enabled reliable assignments of Raman bands in both the FT‐Raman and the resonance Raman spectra. The results indicated that most of the B‐band resonance Raman spectra in H2O was assignable to the fundamental, overtones, and combination bands of about ten vibration modes of ring‐type NHP–(H2O)2 cluster, while most of the B‐band resonance Raman spectra in CH3CN was assigned to the fundamental, overtones, and combination bands of about eight vibration modes of linear‐type NHP–CH3CN. The solvent effect of the excited state enol‐keto tautomeric reaction mechanisms was explored on the basis of the significant difference in the short‐time structural dynamics of NHP in H2O and CH3CN. The inter‐molecular and intra‐molecular ESPT reaction mechanisms were proposed respectively to explain the Franck–Condon region structural dynamics of NHP in H2O and CH3CN.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The thermal and light‐induced O ? O bond breaking of 2‐ethyl‐4‐nitro‐1(2H)‐isoquinolinium hydroperoxide (IQOOH) were studied using 1H NMR, steady‐state UV/vis spectroscopy, femtosecond UV/vis transient absorption (fs TA) and time‐dependent density functional theory (TD DFT) calculations. Thermal O ? O bond breaking occurs at room temperature to generate water and the corresponding amide. The rate of this reaction, k = 5.4 · 10?6 s?1, is higher than the analogous rates of simple alkyl and aryl hydroperoxides; however, the rate significantly decreases in the presence of small amounts of methanol. The calculated structure of the transition state suggests that the thermolysis is facilitated by a 1,2 proton shift. The photochemical process yields the same products, as confirmed using NMR and UV/vis spectroscopy. However, the quantum yield for the photolysis is low (Φ = 0.7%). Fs TA studies provide additional detail of the photochemical process and suggest that the S1 state of IQOOH undergoes fast internal conversion to the ground state, and this process competes with the excited‐state O ? O bond breaking. This result was supported by the fact that the model compound IQOH exhibits similar excited‐state decay lifetimes as IQOOH, which is assigned to the S1 → S0 internal conversion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号