首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absolute rate constants and their temperature dependence were determined by time-resolved electron spin resonance for the addition of the radicals ·CH2CN and ·CH2CO2C(CH3)3 to a variety of mono- and 1,1-disubstituted and to selected 1,2- and trisubstituted alkenes in acetonitrile solution. To alkenes CH2?CXY, ·CH2CN adds at the unsubstituted C-atom with rate constants ranging from 3.3·103 M ?1S ?1 (ethene) to 2.4·106 M ?1S ?1 (1,1-diphenylethene) at 278 K, and the frequency factors are in the narrow range of log (A/M ?1S ?1) = 8.7 ± 0.3. ·CH2CO2C(CH3)3 shows a very similar reactivity with rate constants at 296 K ranging from 1.1·104 M ?1S ?1 (ethene) to 107 M ?1S ?1 (1,1-diphenylethene) and frequency factors log (A/M ?1S ?1) = 8.4 ± 0.1. For both radicals, the rate constants and the activation energies for addition to CH2?CXY correlate well with the overall reaction enthalpy. In contrast to the expectation of an electro- or ambiphilic behavior, polar alkene-substituent effects are not clearly expressed, but some deviations from the enthalpy correlations point to a weak electrophilicity of the radicals. The rate constants for the addition to 1,2- and to trisubstituted alkenes reveal additional steric substituent effects. Self-termination rate data for the title radicals and spectral properties of their adducts to the alkenes are also given.  相似文献   

2.
Rate constants for one-electron oxidation by the methylperoxyl radicals (CH3O2, HOCH2O2, ?O2CCH2O2, and CCI3O2) in aqueous solutions have been measured by pulse radiolysis and found to be in the range of 3 × 105 to 6 × 108 M?1 s?1 for compounds with redox potentials between 0.6 and 0.1 V. Substitution on the methylperoxyl radical with OH or CO2? has only a minor effect on the rate of oxidation but substitution with three chlorines increases the rate constants by two orders of magnitude. The redox potential of the CH3O2 radical is estimated to be 0.6–0.7 V.  相似文献   

3.
The formation of thiyl radicals from [CpRuIII3SSS′-tpdt}] (1A) and [CpRuIII3SSN-apdt}] (1B) {Cp = η5-C5Me5; tpdt = S(CH2CH2S)2; apdt = HN(CH2CH2S)2} has been initiated by thiolate alkylation or oxidation with iodine. Subsequent electron transfer processes yielded disulfide-bridged dinuclear complexes. The mechanistic pathways of these processes will be discussed.  相似文献   

4.
The relative rate constants for the hydrogen abstraction and the double bond addition reactions of t-butoxy radicals (CH3)3 CO? with the model compounds 5-ethylidennorbornane (I), dihydrodicyclopentene (II), isopropylidendicyclopentene (III) and methylcyclopentadienylnorbornylmethane (IV) have been determined by using as a reference reaction the hydrogen abstraction for iso-octane. With (I), (III) and (IV) the predominant process is the hydrogen abstraction, whilst for (II) both mechanisms are important. The results have been applied for the elucidation of some aspects of the initiating mechanism of peroxide-induced cross-linking of EPDM and EPTM terpolymers containing (I)-(IV) pendants.  相似文献   

5.
Abstract

Cobalt(III) complexes of the type [Co(en)2(chel)]X.nH2O where en = ethylenediamine, chel = phthalato = C6H4CO2)2? 2, maleato = (O2CCH = CHCO2)2?, succinato = (O2CCH2CH2CO2)2?, homophthalato = (O2CC6H4(CH2)CO2)2?, citraconato = (O2CC(CH3) = CHCO2)2?, itaconato = (CH2 = C(CO2)CH2CO2)2?, X = NO? 3, Br?, (O2CC6H4CO2H)?, (O2CHC = CHCO2H)?, (O2C(CH2)2CO2H)?, (O2CC6H4(CH2)CO2H)?, (O2CHC = C(CH2)-CO2H)?, and (O2C-CH2?C(= CH2)-CO2H)?, [Co(en)2(malonato)]X.2H2O (where malonato = (O2CCH2CO2)2?, X = Cl?, Br?, and NO? 3) and [Co(en)2CO3]Cl.2H2O have been investigated for their bacterial activity against Escherichia coli B growing on EMB agar and in minimal glucose media both in lag and log phases. Among the most active are where chel = phthalato and homophthalato. The effects are distinct from those known for compounds of Pt, e.g., cis?[Pt(NH3)2Cl2] and rhodium, e.g., trans?[Rh(C5H5N)4,Cl2].6H2O. Antagonisms are reported.  相似文献   

6.
Although
, (Fp  η-C5H5Fe(CO)2) (I) is stable and characterizable, the lower homologue FpCH2CH(CO2CH3)2 (II) is not; this we attribute to a facile elimination reaction resulting from the relatively acidic β-hydrogen of II. Formation of I from Fp? and XCH2CE2CH3 (X  Br, Cl; E  CO2CH2CH3) and cleavage of its FeC bonds (using H+, Br2, CeIV and HgII) occur without major amounts of ester group migrations, even though ·CH2CE2CH3 radicals are involved in some of these reactions.  相似文献   

7.
A study of the reaction initiated by the thermal decomposition of di-t-butyl peroxide (DTBP) in the presence of (CH3)2C?CH2 (B) at 391–444 K has yielded kinetic data on a number of reactions involving CH3 (M·), (CH3)2CCH2CH3 (MB·) and (CH3)2?CH2C(CH3)2CH2CH3 (MBB·) radicals. The cross-combination ratio for M· and MB· radicals, rate constants for the addition to B of M· and MB· radicals relative to those for their recombination reactions, and rate constants for the decomposition of DTBP, have been determined. The values are, respectively, where θ = RT ln 10 and the units are dm3/2 mol?1/2 s?1/2 for k2/k and k9/k, s?1 for k0, and kJ mol?1 for E. Various disproportionation-combination ratios involving M·, MB·, and MBB· radicals have been evaluated. The values obtained are: Δ1(M·, MB·) = 0.79 ± 0.35, Δ1(MB·, MB·) = 3.0 ± 1.0, Δ1(MBB·, MB·) = 0.7 ± 0.4, Δ1(M·, MBB·) = 4.1 ± 1.0, Δ1(MB·, MBB·) = 6.2 ± 1.4, and Δ1(MBB·, MBB·) = 3.9 ± 2.3, where Δ1 refers to H-abstraction from the CH3 group adjacent to the center of the second radical, yielding a 1-olefin. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The kinetics of base hydrolysis of (αβ S)-(o -methoxy benzoato) (tetraethylenepentamine)cobalt(III) obeyed the rate law: kobs = kOH[OH?], in the range 0.05 ? [OH?]T, mol dm?3 ? 1.0, I = 1.0 mol dm?3, and 20.0–40.0°C. At 25°C, kOH = 13.4 ± 0.4 dm3 mol?1 s?1, ΔH = 93 ± 2 kJ mol?1 and ΔS = 90 ± 5 JK?1 mol?1. Several anions of varying charge and basicity, CH3CO2?, SO32?, SO42?, CO32?, C2O42?, CH2(CO2)22?, PO43?, and citrate3? had no effect on the rate while phthalate2?, NTA3?, EDTA4?, and DTPA5? accelerated the process via formation of the reactive ion pairs. The anionic (SDS), cationic (CTAB), and neutral (Triton X-100) micelles, however, retarded the reaction, the effect being in the order SDS> CTAB > Triton X-100. The importance of electrostatic and hydrophobic effects of the micelles on the selective partitioning of the reactants between the micellar and bulk aqueous pseudo-phases which control the rate are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
The addition of the ·But (R1) and ·P(O)(OPri)2 (R2) radicals to pyrrolidino[60]fullerenes C60CH2NMeCHX (X = C6H4N(CH2CH2Cl)2, 2,6-(But)2C6H2OH, PhC6H4, and indol-3-yl) was studied by ESR spectroscopy. The rate constants of R1 radical addition to these compounds and dimerization of spin-adducts of the R1 radicals with pyrrolidino[60]fullerenes were determined. Pyrrolidino[60]fullerenes manifest considerably higher reactivity toward the R1 radicals than fullerene C60 and methanofullerenes C60CX1X2 (X1 = X2 = CO2Et; X1 = CO2Me, X2 = OP(OMe)2, X1 = X2 = OP(OEt)2).  相似文献   

10.
Metal Complexes of Biologically Important Ligands, CLVII [1] Halfsandwich Complexes of Isocyanoacetylamino acid esters and of Isocyanoacetyldi‐ and tripeptide esters (?Isocyanopeptides”?) N‐Isocyanoacetyl‐amino acid esters CNCH2C(O) NHCH(R)CO2CH3 (R = CH3, CH(CH3)2, CH2CH(CH3)2, CH2C6H5) and N‐isocyanoacetyl‐di‐ and tripeptide esters CNCH2C(O)NHCH(R1)C(O)NHCH(R2)CO2C2H5 and CNCH2C(O)NHCH(R1)C(O)NHCH (R2)C(O)NHCH(R3)CO2CH3 (R1 = R2 = R3 = CH2C6H5, R2 = H, CH2C6H5) are available by condensation of potassium isocyanoacetate with amino acid esters or peptide esters. These isocyanides form with chloro‐bridged complexes [(arene)M(Cl)(μ‐Cl)]2 (arene = Cp*, p‐cymene, M = Ir, Rh, Ru) in the presence of Ag[BF4] or Ag[CF3SO3] the cationic halfsandwich complexes [(arene)M(isocyanide)3]+X? (X = BF4, CF3SO3).  相似文献   

11.
Pulse radiolysis techniques were used to measure the gas phase UV absorption spectra of the title peroxy radicals over the range 215–340 nm. By scaling to σ(CH3O2)240 nm = (4.24 ± 0.27) × 10?18, the following absorption cross sections were determined: σ(HO2)240 nm = 1.29 ± 0.16, σ(C2H5O2)240 nm = 4.71 ± 0.45, σ(CH3C(O)CH2O2)240 nm = 2.03 ± 0.22, σ(CH3C(O)CH2O2)230 nm = 2.94 ± 0.29, and σ(CH3C(O)CH2O2)310 nm = 1.31 ± 0.15 (base e, units of 10?18 cm2 molecule?1). To support the UV measurements, FTIR‐smog chamber techniques were employed to investigate the reaction of F and Cl atoms with acetone. The F atom reaction proceeds via two channels: the major channel (92% ± 3%) gives CH3C(O)CH2 radicals and HF, while the minor channel (8% ± 1%) gives CH3 radicals and CH3C(O)F. The majority (>97%) of the Cl atom reaction proceeds via H atom abstraction to give CH3C(O)CH2 radicals. The results are discussed with respect to the literature data concerning the UV absorption spectra of CH3C(O)CH2O2 and other peroxy radicals. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 283–291, 2002  相似文献   

12.
Flash photolysis of dimethyl oxalate produced the radicals CH3, CH3O, and COOCH3. Thermally equilibrated methoxycarbonyl radicals did not decompose during radicalradical reactions in the presence of 40-torr cyclohexane in the temperature range 298–448 K. Cyclohexyl radicals were also generated during the flash photolysis of the reaction mixture. Rate coefficients of radical–radical reactions were calculated from the amounts of stable products determined by gas chromatography: CO, CO2, CH4, C2H4, C2H6, CH2O, CH3OH, CH3OCH3, HCOOCH3, CH3COOCH3, CH3OCOOCH3, CH3C6H11, and CH3OC6H11. Calculations were performed using an iterative computer integration program. Absolute values of rate coefficients were based on the rate coefficient of the reaction between methyl radicals, k1 = 2.7 × 1010 dm3 mol?1 s?1, measured with the same equipment. The rate coefficients for reactions (5)–(8) are:   相似文献   

13.
On the coordination chemistry of phosphines and phosphinoxides. XXIII. Heavy metal complexes of tetramethyl-biphosphine The reactions of tetramethyl-biphosphine with salts of 3d elements including Cd and Hg, too, in THF, benzene, acetonitrile and alcohols, respectively, results in forming complexes of differing compositions: (MnXn)2{(CH3)2P? P(CH3}2)3? Mn = TiIII, VIII, CrIII, FeII, NiII, CuI; MX2{(CH3)2P? P(CH3)2}2? M = CoII, NiII, HgII; MX2 · (CH3)2P? P(CH3)2? M = FeII, NiII, Zn, Cd, HgII; X = Cl, Br, J. The partly intensively coloured complexes have low solubilities; this item complicates the performing of structure determining methods. Partial informations about the structures of the complexes are to be gained by magnetic and spectrophotometric measurements and X-ray investigations. The tendency of (CH3)2P? P(CH3)2 to form complexes with transition metals differs from that of other biphosphines. Splitting of the P? P bond due to metal salts does not occur. (CH3)2P? P(CH3)2 acts as a monodentate or bidentate ligand, like other members of the R2P? PR2 series do too. The forming of ligand bridges seems to be favoured in comparison to the chelate function.  相似文献   

14.
The UV absorption spectrum and kinetics of CH2I and CH2IO2 radicals have been studied in the gasphase at 295 K using a pulse radiolysis UV absorption spectroscopic technique. UV absorption spectra of CH2I and CH2IO2 radicals were quantified in the range 220–400 nm. The spectrum of CH2I has absorption maxima at 280 nm and 337.5 nm. The absorption cross-section for the CH2I radicals at 337.5 nm was (4.1 ± 0.9) × 10?18 cm2 molecule?1. The UV spectrum of CH2IO2 radicals is broad. The absorption cross-section at 370 nm was (2.1 ± 0.5) × 10?18 cm2 molecule?1. The rate constant for the self reaction of CH2I radicals, k = 4 × 10?11 cm3 molecule?1 s?1 at 1000 mbar total pressure of SF6, was derived by kinetic modelling of experimental absorbance transients. The observed self-reaction rate constant for CH2IO2 radicals was estimated also by modelling to k = 9 × 10?11 cm3 molecule?1 s?1. As part of this work a rate constant of (2.0 ± 0.3) × 10?10 cm3 molecule?1 s?1 was measured for the reaction of F atoms with CH3I. The branching ratios of this reaction for abstraction of an I atom and a H atom were determined to (64 ± 6)% and (36 ± 6)%, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Perylene (Py)‐containing polyacetylenes with different skeleton structures ? [HC?C(C6H4)CO2? Py]n? (P 1 ), ? [HC?C(CH2)8CO2? Py]n? (P 2 ), and ? {[(C6H5) C?C(CH2)9NH2]? co? [(C6H5)C?C(CH2)9? Py]}n? (P 3 ) are synthesized in satisfactory yields by Rh‐catalyzed polymerization (for P 1 and P 2 ) and polymer reaction (for P 3 ). All the polymers are soluble and possess high molecular weights (Mw up to 2.8 × 105). Their structures and properties are characterized and evaluated by IR, NMR, UV, TGA, PL, and photovoltaic (PV) analyses. The polymers are thermally stable, losing little of their weights when heated to 330 °C. When their solutions are irradiated, their perylene pendants emit intense red fluorescence at 610 nm. PV cells with a configuration of ITO/PEDOT:PSS/polymer/LiF/Al are fabricated, which show maximum current density of 10.3 μA/cm2. The external quantum efficiency is sensitive to the polymer structure, with P 3 exhibiting the highest value of 0.23%. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2025–2037, 2008  相似文献   

16.
The rate constants for the addition of the OP·(OPri)2, Me3C·, and Me(CH2)3 ·CH2 radicals to the methano[60]fullerenes C60CX1X2 (X1 = X2 = CO2Et; X1 = CO2Me, X2 = OP(OMe)2; X1 = X2 = OP(OEt)2) were determined by ESR spectroscopy. Methanofullerenes are more reactive toward these radicals than C60 fullerene.  相似文献   

17.
Sorption and dilation properties of polymer-gas systems involving poly(ethylene-co-vinyl acetate) and N2, CH4, or CO2, have been investigated at pressures up to 50 atm at temperatures of 10–40°C. Sorption isotherms for low-solubility gases (i.e., CH4 and N2) can be described by Henry's law, and those for high-solubility gas (i.e., CO2) by Flory-Huggins dissolution equation. Dilation isotherms are similar in contour to the corresponding sorption isotherms. From the obtained sorption and dilation data, partial molar volumes of the gases in the polymer were determined as a function of temperature. Thermal expansivity of dissolved CO2 molecules was estimated at ca. 2.4 × 10?3°C?1 from the temperature dependence of partial molar volume. The expansivity is smaller than that of liquid CO2 and larger than those of the polymer and organic liquids. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The reaction between certain platinum(II) complexes and alky radicals produces an unstable organoplatinum(III) intermediate, {PtIII -R}. The kinetics of this step were evaluated by laser flash photolysis with ABTS2 (2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) ion) and TMPD (tetramethylphenylenediamine) as kinetic probes. The rate constants for PtCl42? are: kPt/108 L mol?1 s?1 = 5.2, 2.8 and 0.27 for CH3, C2H5, and CH2Cl in aqueous solution at pH 1. Those with cis-Pt(NH3)2Cl2 are somewhat smaller, and those for Pt(NH3)42+ too small to measure will) this technique. The product analysis indicates that the decomposition of organoplatinum takes place by hydrolysis and (for R = C2H5 only) by β-elimination, The kinetic isotope effect on die β-elimination of DCH2CH2PtC4,2? is kH/kD = 1.2. The β-elimination step produces a PtIII-hydride that releases hydrogen gas and forms {PtIII-OH}. The short-lived Pt(III) intermediate may disproportionate or oxidize the CoII complex that is produced in the radical-generating step.  相似文献   

19.
The photolysis of poly(ethylene terephthalate) films was studied in vacuo with light of wavelengths 2537 and 3130 A. A very stable filter system which cuts out the 3025 A. line was developed to isolate 3130 A. from a mercury spectrum. Despite the fact that the penetration of 2537 A. light was limited to a depth of a ca. 103 A. whereas 3130 A. light was more uniformly absorbed it was possible to demonstrate that the quantum yields for CO and CO2 formation were in agreement for the two wavelengths. Quantum yields for fractures and crosslinks were estimated by sol-gel analysis. An absorption maximum which develops near 13 μ after exposure of poly(ethylene terephthalate) to light or γ-rays was attributed to the formation of groups formed by elimination of CO and CO2. ESR spectra for trapped radicals were tentatively assigned to the components p-C6H3· and ·O? CH2? CH2? . It is suggested that the former radicals combine to form crosslinks. Quantum yields (× 104) with 3130 A. light are: CO, 6; CO2, 2; crosslinks, 5.5; trapped radicals, 1.5; With 2537 A. light, quantum yields are: CO, 6–9; CO2, 2–3; the network formed was not characterized as to crosslinks and fractures; trapped radicals were observed to exist but not determined.  相似文献   

20.
Ionising radiations, employed in a broad range of dose-rate, together with a complex non-linear computation of reaction mechanisms, allow the determination of boundary values of rate constants concerning sorbitylfurfural (SF) reactivity towards a wide series of oxidant and/or virtually harmful radicals. SF reacts with some radicals (H, SO4-˙, CO3-˙, Br2-˙, CH3˙), produced with both pulse and stationary radiolysis in neutral aqueous solution, having electrophilic and/or oxidative behaviour. The rate constants range from diffusional (k = (7-9) × 109 M-1 s-1) to relatively low values (k = 2 × 105 M-1 s-1). The possibility to observe these reactions, by means of radiolytical techniques, is heavily influenced by dose-rate. A relation between the radical E0NHE and their reactivity with SF is hinted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号