首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We consider a time‐dependent and a steady linear convection‐diffusion‐reaction equation whose coefficients are nonconstant. Boundary conditions are mixed (Dirichlet and Robin–Neumann) and nonhomogeneous. Both the unsteady and the steady problem are approximately solved by a combined finite element–finite volume method: the diffusion term is discretized by Crouzeix–Raviart piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric finite volumes. In the unsteady case, the implicit Euler method is used as time discretization. The ‐ and the ‐error in the unsteady case and the H1‐error in the steady one are estimated against the data, in such a way that no parameter enters exponentially into the constants involved. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1591–1621, 2016  相似文献   

2.
A two‐grid finite volume element method, combined with the modified method of characteristics, is presented and analyzed for semilinear time‐dependent advection‐dominated diffusion equations in two space dimensions. The solution of a nonlinear system on the fine‐grid space (with grid size h) is reduced to the solution of two small (one linear and one nonlinear) systems on the coarse‐grid space (with grid size H) and a linear system on the fine‐grid space. An optimal error estimate in H1 ‐norm is obtained for the two‐grid method. It shows that the two‐grid method achieves asymptotically optimal approximation, as long as the mesh sizes satisfy h = O(H2). Numerical example is presented to validate the usefulness and efficiency of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

3.
In this paper a two‐dimensional solute transport model is considered to simulate the leaching of copper ore tailing using sulfuric acid as the leaching agent. The mathematical model consists in a system of differential equations: two diffusion–convection‐reaction equations with Neumann boundary conditions, and one ordinary differential equation. The numerical scheme consists in a combination of finite volume and finite element methods. A Godunov scheme is used for the convection term and an P1‐FEM for the diffusion term. The convergence analysis is based on standard compactness results in L2. Some numerical examples illustrate the effectiveness of the scheme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, we develop a two‐grid algorithm for nonlinear reaction diffusion equation (with nonlinear compressibility coefficient) discretized by expanded mixed finite element method. The key point is to use two‐grid scheme to linearize the nonlinear term in the equations. The main procedure of the algorithm is solving a small‐scaled nonlinear equations on the coarse grid and dealing with a linearized system on the fine space using the Newton iteration with the coarse grid solution. Error estimation to the expanded mixed finite element solution is analyzed in detail. We also show that two‐grid solution achieves the same accuracy as long as the mesh sizes satisfy H = O(h1/2). Two numerical experiments are given to verify the effectiveness of the algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

5.
We consider a time-dependent linear convection-diffusion equation. This equation is approximated by a combined finite element-finite volume method: the diffusion term is discretized by Crouzeix-Raviart piecewise linear finite elements, and the convection term by upwind barycentric finite volumes on a triangular grid. An implicit Euler approach is used for time discretization. It is shown that the error associated with this scheme, measured by a discrete L-L2- and L2-H1-norm, respectively, decays linearly with the mesh size and the time step. This result holds without any link between mesh size and time step. The dependence of the corresponding error bound on the diffusion coefficient is completely explicit.  相似文献   

6.
In this paper, we will investigate a two grid finite element discretization method for the semi‐linear hyperbolic integro‐differential equations by piecewise continuous finite element method. In order to deal with the semi‐linearity of the model, we use the two grid technique and derive that once the coarse and fine mesh sizes H, h satisfy the relation h = H2 for the two‐step two grid discretization method, the two grid method achieves the same convergence accuracy as the ordinary finite element method. Both theoretical analysis and numerical experiments are given to verify the results.  相似文献   

7.
In this article, we develop a combined finite element‐weighted upwind finite volume method for convection‐dominated diffusion problems in two dimensions, which discretizes the diffusion term with the standard finite element scheme, and the convection and source terms with the weighted upwind finite volume scheme. The developed method leads to a totally new scheme for convection‐dominated problems, which overcomes numerical oscillation, avoids numerical dispersion, and has high‐order accuracy. Stability analyses of the scheme are given for the problems with constant coefficients. Numerical experiments are presented to illustrate the stability and optimal convergence of our proposed method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 799–818, 2016  相似文献   

8.
An optimal nonlinear Galerkin method with mixed finite elements is developed for solving the two‐dimensional steady incompressible Navier‐Stokes equations. This method is based on two finite element spaces XH and Xh for the approximation of velocity, defined on a coarse grid with grid size H and a fine grid with grid size h ? H, respectively, and a finite element space Mh for the approximation of pressure. We prove that the difference in appropriate norms between the solutions of the nonlinear Galerkin method and a classical Galerkin method is of the order of H5. If we choose H = O(h2/5), these two methods have a convergence rate of the same order. We numerically demonstrate that the optimal nonlinear Galerkin method is efficient and can save a large amount of computational time. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 762–775, 2003.  相似文献   

9.
Stable finite difference approximations of convection‐diffusion equations lead to large sparse linear systems of equations whose coefficient matrix is an M‐matrix, which is highly non‐symmetric when the convection dominates. For an efficient iterative solution of such systems, it is proposed to consider in the non‐symmetric case an algebraic multilevel preconditioning method formerly proposed for pure diffusion problems, and for which theoretical results prove grid independent convergence in this context. These results are supplemented here by a Fourier analysis that applies to constant coefficient problems with periodic boundary conditions whenever using an ‘idealized’ version of the two‐level preconditioner. Within this setting, it is proved that any eigenvalue λ of the preconditioned system satisfies for some real constant c such that . This result holds independently of the grid size and uniformly with respect to the ratio between convection and diffusion. Extensive numerical experiments are conducted to assess the convergence of practical two‐ and multi‐level schemes. These experiments, which include problems with highly variable and rotating convective flow, indicate that the convergence is grid independent. It deteriorates moderately as the convection becomes increasingly dominating, but the convergence factor remains uniformly bounded. This conclusion is supported for both uniform and some non‐uniform (stretched) grids. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
We consider a Galerkin finite element method that uses piecewise bilinears on a class of Shishkin‐type meshes for a model singularly perturbed convection‐diffusion problem on the unit square. The method is shown to be convergent, uniformly in the diffusion parameter ϵ, of almost second order in a discrete weighted energy norm. As a corollary, we derive global L2‐norm error estimates and local L‐norm estimates. Numerical experiments support our theoretical results. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16:426–440, 2000  相似文献   

11.
We deal with the numerical solution of a scalar nonstationary nonlinear convection‐diffusion equation. We employ a combination of the discontinuous Galerkin finite element (DGFE) method for the space as well as time discretization. The linear diffusive and penalty terms are treated implicitly whereas the nonlinear convective term is treated by a special higher order explicit extrapolation from the previous time step, which leads to the necessity to solve only a linear algebraic problem at each time step. We analyse this scheme and derive a priori asymptotic error estimates in the L(L2) –norm and the L2(H1) –seminorm with respect to the mesh size h and time step τ. Finally, we present an efficient solution strategy and numerical examples verifying the theoretical results. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1456–1482, 2010  相似文献   

12.
This survey enfolds rigorous analysis of the defect‐correction finite element (FE) method for the time‐dependent conduction‐convection problem which based on the Crank‐Nicolson scheme. The method consists of two steps: solve a nonlinear problem with an added artificial viscosity term on a FE grid and correct the solutions on the same grid using a linearized defect‐correction technique. The stability and optimal error estimate of the fully discrete scheme are derived. As a consequence, the effectiveness of the method to deal with high Reynolds number is illustrated in several numerical experiments. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 681–703, 2017  相似文献   

13.
We propose and analyze in this paper a numerical scheme for nonlinear degenerate parabolic convection–diffusion–reaction equations in two or three space dimensions. We discretize the time evolution, convection, reaction, and source terms on a given grid, which can be nonmatching and can contain nonconvex elements, by means of the cell‐centered finite volume method. To discretize the diffusion term, we construct a conforming simplicial mesh with the vertices given by the original grid and use the conforming piecewise linear finite element method. In this way, the scheme is fully consistent and the discrete solution is naturally continuous across the interfaces between the subdomains with nonmatching grids, without introducing any supplementary equations and unknowns or using any interpolation at the interfaces. We allow for general inhomogeneous and anisotropic diffusion–dispersion tensors, propose two variants corresponding respectively to arithmetic and harmonic averaging, and use the local Péclet upstream weighting in order to only add the minimal numerical diffusion necessary to avoid spurious oscillations in the convection‐dominated case. The scheme is robust, efficient since it leads to positive definite matrices and one unknown per element, locally conservative, and satisfies the discrete maximum principle under the conditions on the simplicial mesh and the diffusion tensor usual in the finite element method. We prove its convergence using a priori estimates and the Kolmogorov relative compactness theorem and illustrate its behavior on a numerical experiment. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

14.
We provide new insights into the a priori theory for a time‐stepping scheme based on least‐squares finite element methods for parabolic first‐order systems. The elliptic part of the problem is of general reaction‐convection‐diffusion type. The new ingredient in the analysis is an elliptic projection operator defined via a nonsymmetric bilinear form, although the main bilinear form corresponding to the least‐squares functional is symmetric. This new operator allows to prove optimal error estimates in the natural norm associated to the problem and, under additional regularity assumptions, in the L2 norm. Numerical experiments are presented which confirm our theoretical findings.  相似文献   

15.
We consider implicit and semi‐implicit time‐stepping methods for continuous interior penalty (CIP) finite element approximations of Sobolev equations with convection‐dominated term. Stability is obtained by adding an interior penalty term giving L2 ‐control of the jump of the gradient over element faces. Several $\cal {A}$ ‐stable time‐stepping methods are analyzed and shown to be unconditionally stable and optimally convergent. We show that the contribution from the gradient jumps leading to an extended matrix pattern may be extrapolated from previous time steps, and hence handled explicitly without loss of stability and accuracy. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

16.
In this article we develop a high‐order Godunov method for one‐dimensional convection‐diffusion‐reaction problems where convection dominates diffusion. The heart of this method comes from incorporating the diffusion term via the slope of the linear representation (recovery) of the solution on each grid cell. The method is conservative and explicit. Therefore, it is efficient in computing time. For constant coefficient linear convection, diffusion, and Lipschitz‐type reaction, the properties of the total variation stability and monotonicity preservation are proved. An error estimation is derived. Computational examples are presented and compared with the exact solutions. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 495–512, 2000  相似文献   

17.
In this paper, the full discrete scheme of mixed finite element approximation is introduced for semilinear hyperbolic equations. To solve the nonlinear problem efficiently, two two‐grid algorithms are developed and analyzed. In this approach, the nonlinear system is solved on a coarse mesh with width H, and the linear system is solved on a fine mesh with width hH. Error estimates and convergence results of two‐grid method are derived in detail. It is shown that if we choose in the first algorithm and in the second algorithm, the two‐grid algorithms can achieve the same accuracy of the mixed finite element solutions. Finally, the numerical examples also show that the two‐grid method is much more efficient than solving the nonlinear mixed finite element system directly.  相似文献   

18.
The aim of this paper is to propose mixed two‐grid finite difference methods to obtain the numerical solution of the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. The finite difference equations at all interior grid points form a large‐sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a family of finite difference methods for discretizing the spatial and time derivatives. The obtained system has been solved by two‐grid method, where the two‐grid method is used for solving the large‐sparse linear systems. Also, in the proposed method, the spectral radius with local Fourier analysis is calculated for different values of h and Δt. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this note, a non‐standard finite difference (NSFD) scheme is proposed for an advection‐diffusion‐reaction equation with nonlinear reaction term. We first study the diffusion‐free case of this equation, that is, an advection‐reaction equation. Two exact finite difference schemes are constructed for the advection‐reaction equation by the method of characteristics. As these exact schemes are complicated and are not convenient to use, an NSFD scheme is derived from the exact scheme. Then, the NSFD scheme for the advection‐reaction equation is combined with a finite difference space‐approximation of the diffusion term to provide a NSFD scheme for the advection‐diffusion‐reaction equation. This new scheme could preserve the fixed points, the positivity, and the boundedness of the solution of the original equation. Numerical experiments verify the validity of our analytical results. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

20.
Superconvergence approximations of singularly perturbed two‐point boundary value problems of reaction‐diffusion type and convection‐diffusion type are studied. By applying the standard finite element method of any fixed order p on a modified Shishkin mesh, superconvergence error bounds of (N?1 ln (N + 1))p+1 in a discrete energy norm in approximating problems with the exponential type boundary layers are established. The error bounds are uniformly valid with respect to the singular perturbation parameter. Numerical tests indicate that the error estimates are sharp; in particular, the logarithmic factor is not removable. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 374–395, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号