首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article is devoted to the study of a fully discrete A ‐ finite element method to solve nonlinear Maxwell's equations based on backward Euler discretization in time and nodal finite elements in space. The nonlinearity is owing to a field‐dependent conductivity with the power‐law form . We design a nonlinear time‐discrete scheme for approximation in suitable function spaces. We show the well‐posedness of the problem, prove the convergence of the semidiscrete scheme based on the boundedness of the second derivative in the dual space and derive its error estimate. The Minty–Browder technique is introduced to obtain the convergence of the nonlinear term. Finally, we discuss the error estimate for the fully discretized problem and support the theoretical result by two numerical experiments. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 2083–2108, 2014  相似文献   

2.
An enhanced finite-difference time-domain (FDTD) algorithm is built to solve the transverse electric two-dimensional Maxwell's equations with inhomogeneous dielectric media where the electric fields are discontinuous across the dielectric interface. The new algorithm is derived based upon the integral version of the Maxwell's equations as well as the relationship between the electric fields across the interface. To resolve the instability issue of Yee's scheme (staircasing) caused by discontinuous permittivity across the interface, our algorithm revises the permittivities and makes some corrections to the scheme for the cells around the interface. It is also an improvement over the contour-path effective permittivity algorithm by including some extra terms in the formulas. The scheme is validated in solving the scattering of a dielectric cylinder with exact solution from Mie theory and is then compared with the above contour-path method, the usual staircasing and the volume-average method. The numerical results demonstrate that the new algorithm has achieved significant improvement in accuracy over other methods. Furthermore, the algorithm has a simple structure and can be merged into current FDTD software packages easily. The C++ source code for this paper is provided as supporting information for public access.  相似文献   

3.
A new stress-pressure-displacement formulation for the planar elasticity equations is proposed by introducing the auxiliary variables, stresses, and pressure. The resulting first-order system involves a nonnegative parameter that measures the material compressibility for the elastic body. A two-stage least-squares finite element procedure is introduced for approximating the solution to this system with appropriate boundary conditions. It is shown that the two-stage least-squares scheme is stable and, with respect to the order of approximation for smooth exact solutions, the rates of convergence of the approximations for all the unknowns are optimal both in the H1-norm and in the L2-norm. Numerical experiments with various values of the parameter are examined, which demonstrate the theoretical estimates. Among other things, computational results indicate that the behavior of convergence is uniform in the nonnegative parameter. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 297–315, 1998  相似文献   

4.
A least‐squares mixed finite element (LSMFE) schemes are formulated to solve the 1D regularized long wave (RLW) equations and the convergence is discussed. The L2 error estimates of LSMFE methods for RLW equations under the standard regularity assumption on the finite element partition are given.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

5.
A collection of global and domain decomposition mixed finite element schemes for the approximate solution of the harmonic Maxwell's equations on a bounded domain with absorbing boundary conditions at the artificial boundaries are presented. The numerical procedures allow us to solve efficiently the direct problem in magnetotellurics consisting of determining the electromagnetic scattered field in a two–dimensional earth model of arbitrary conductivity properties. Convergence results for the numerical procedures are derived. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 407–437, 1998  相似文献   

6.
In this article, we consider the time‐dependent Maxwell's equations in a bounded domain when dispersive media are involved. The Crank‐Nicolson scheme is developed to approximate the electric field equation by Nedelec edge elements and is proved to be optimal convergent in energy norm. The analysis is carried out for Debye medium, but the same results hold true for other dispersive media such as plasma and Lorentz medium. Furthermore, our analysis extends straightforward to cases when a dispersive medium and a simple medium (such as air) are coupled. Mathematics Subject Classification (2000): 65N30, 35L15, 78‐08. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

7.
In this paper, Newmark time‐stepping scheme and edge elements are used to numerically solve the time‐dependent scattering problem in a three‐dimensional polyhedral cavity. Finite element methods based on the variational formulation derived in Van and Wood (Adv. Comput. Math., to appear) are considered. Existence and uniqueness of the discrete problem is proved by using Babuska–Brezzi theory. Finite element error estimate and stability of the Newmark scheme are also established. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the structure of the singular and regular parts of the solution of time‐harmonic Maxwell's equations in polygonal plane domains and their effective numerical treatment. The asymptotic behaviour of the solution near corner points of the domain is studied by means of discrete Fourier transformation and it is proved that the solution of the boundary value problem does not belong locally to H2 when the boundary of the domain has non‐acute angles. A splitting of the solution into a regular part belonging to the space H2, and an explicitly described singular part is presented. For the numerical treatment of the boundary value problem, we propose a finite element discretization which combines local mesh grading and the singular field methods and derive a priori error estimates that show optimal convergence as known for the classical finite element method for problems with regular solutions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is concerned with the mathematical analysis of the scattering of a time‐harmonic electromagnetic plane wave by an open and overfilled cavity that is embedded in a perfect electrically conducting infinite ground plane, where the electromagnetic wave propagation is governed by the Maxwell equations. Above the flat ground surface and the open aperture of the cavity, the space is assumed to be filled with a homogeneous medium with a constant permittivity and permeability, whereas the interior of the cavity is filled with some inhomogeneous medium with a variable permittivity and permeability. The scattering problem is modeled as a boundary value problem over a bounded domain, with transparent boundary condition proposed on the hemisphere enclosing the inhomogeneity represented by the cavity. The existence and uniqueness of the weak solution for the model problem are established by using a variational approach. The perfectly matched layer (PML) method is investigated to truncate the unbounded electromagnetic cavity scattering problem. It is shown that the truncated PML problem attains a unique solution. An explicit error estimate is given between the solution of the original scattering problem and that of the truncated PML problem. The error estimate implies that the PML solution converges exponentially to the original cavity scattering problem by increasing either the PML medium parameter or the PML layer thickness. The convergence result is expected to be useful for determining the PML medium parameter in the computational electromagnetic scattering problem. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We study a full Maxwell's system accompanied with a non-linear degenerate boundary condition, which represents a generalization of the classical Silver-Müller condition for a non-perfect conductor. The relationship between the normal components of electric E and magnetic H field obeys the following power law ν×H=ν×(|E×ν|α−1E×ν) for some α∈(0,1]. We establish the existence and uniqueness of a weak solution in a suitable function spaces under the minimal regularity assumptions on the boundary Γ and the initial data E0 and H0. We design a non-linear time discrete approximation scheme and prove convergence of the approximations to a weak solution. We also derive the error estimates for the time discretization. As a next step we study the fully discrete problem using curl-conforming edge elements and derive the corresponding error estimates. Finally we present some numerical experiments.  相似文献   

11.
The energy‐conserved splitting finite‐difference time‐domain (EC‐S‐FDTD) method has recently been proposed to solve the Maxwell equations with second order accuracy while numerically keep the L2 energy conservation laws of the equations. In this paper, the EC‐S‐FDTD scheme for the 3D Maxwell equations is proved to be energy‐conserved and unconditionally stable in the discrete H1 norm. The EC‐S‐FDTD scheme is of second‐order accuracy both in time step and spatial steps, which suggests the super‐convergence of this scheme in the discrete H1 norm. And the divergence of the electric field of the EC‐S‐FDTD scheme in the discrete L2 norm is second‐order accurate. Numerical experiments confirm our theoretical analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we revisit the classical error estimates of nonconforming Crouzeix–Raviart type finite elements for the Stokes equations. By introducing some quasi‐interpolation operators and using the special properties of these nonconforming elements, it is proved that their consistency errors can be bounded by their approximation errors together with a high‐order term, especially which can be of arbitrary order provided that f in the right‐hand side is piecewise smooth enough. Furthermore, we show an interesting result that both in the energy norm and L2 norm the consistency errors are dominated by the approximation errors of their finite element spaces. As byproducts, we derive the error estimates in both energy and L2 norms under the regularity assumption ( u ,p) ∈ H 1 + s(Ω) × Hs(Ω) with any s ∈ (0,1], which fills the gap in the a priori error estimate of these nonconforming elements with low regularity . Furthermore, a robust convergence is proved with minimal regularity assumption s = 0. These results seem to be missing in the literature. Numerical tests are provided, confirming the analysis, especially the new results on the L2 convergence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
We study an induction hardening model described by Maxwell's equations coupled with a heat equation. The magnetic induction field is assumed a nonlinear constitutional relation and the electric conductivity is temperature‐dependent. The Tψ method is to transform Maxwell's equations to the vector–scalar potential formulations and to solve the potentials by means of the finite element method. In this article, we present a fully discrete Tψ finite element scheme for this nonlinear coupled problem and discuss its solvability. We prove that the discrete solution converges to a weak solution of the continuous problem. Finally, we conclude with two numerical experiments for the coupled system.  相似文献   

14.
An a posteriori error analysis for Boussinesq equations is derived in this article. Then we compare this new estimate with a previous one developed for a regularized version of Boussinesq equations in a previous work. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 214–236, 2000  相似文献   

15.
16.
This paper presents an algebraic multigrid method for the efficient solution of the linear system arising from a finite element discretization of variational problems in H0(curl,Ω). The finite element spaces are generated by Nédélec's edge elements. A coarsening technique is presented, which allows the construction of suitable coarse finite element spaces, corresponding transfer operators and appropriate smoothers. The prolongation operator is designed such that coarse grid kernel functions of the curl‐operator are mapped to fine grid kernel functions. Furthermore, coarse grid kernel functions are ‘discrete’ gradients. The smoothers proposed by Hiptmair and Arnold, Falk and Winther are directly used in the algebraic framework. Numerical studies are presented for 3D problems to show the high efficiency of the proposed technique. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we extend the approach developed by the author for the standard finite element method in the L‐norm of the noncoercive variational inequalities (VI) (Numer Funct Anal Optim.2015;36:1107‐1121.) to impulse control quasi‐variational inequality (QVI). We derive the optimal error estimate, combining the so‐called Bensoussan‐Lions Algorithm and the concept of subsolutions for VIs.  相似文献   

18.
In this article, we consider the time‐dependent Maxwell's equations modeling wave propagation in metamaterials. One‐order higher global superclose results in the L2 norm are proved for several semidiscrete and fully discrete schemes developed for solving this model using nonuniform cubic and rectangular edge elements. Furthermore, L superconvergence at element centers is proved for the lowest order rectangular edge element. To our best knowledge, such pointwise superconvergence result and its proof are original, and we are unaware of any other publications on this issue. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential 2011  相似文献   

19.
In this paper, the stabilized mixed finite element methods are presented for the Navier‐Stokes equations with damping. The existence and uniqueness of the weak solutions are proven by use of the Brouwer fixed‐point theorem. Then, optimal error estimates for the H1‐norm and L2‐norm of the velocity and the L2‐norm of the pressure are derived. Moreover, on the basis of the optimal L2‐norm error estimate of the velocity, a stabilized two‐step method is proposed, which is more efficient than the usual stabilized methods. Finally, two numerical examples are implemented to confirm the theoretical analysis.  相似文献   

20.
We study the stability properties of, and the phase error present in, a finite element scheme for Maxwell's equations coupled with a Debye or Lorentz polarization model. In one dimension we consider a second order formulation for the electric field with an ordinary differential equation for the electric polarization added as an auxiliary constraint. The finite element method uses linear finite elements in space for the electric field as well as the electric polarization, and a theta scheme for the time discretization. Numerical experiments suggest the method is unconditionally stable for both Debye and Lorentz models. We compare the stability and phase error properties of the method presented here with those of finite difference methods that have been analyzed in the literature. We also conduct numerical simulations that verify the stability and dispersion properties of the scheme. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号