首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atom transfer radical polymerization conditions were optimized and standardized with different initiator and catalyst systems. Acrylonitrile/n‐butyl acrylate copolymers were synthesized with 2‐bromopropionitrile as the initiator and CuCl/Cu(0)/2,2′‐bipyridine as the catalyst system. Variations of the feed composition led to copolymers with different compositions. The number‐average molecular weight and the polydispersity index were determined by gel permeation chromatography. Quantitative 13C{1H} NMR was employed to determine the copolymer composition. The reactivity ratios calculated with a methodology based on the Mao–Huglin terminal model were rA = 1.30 and rB = 0.68 for acrylonitrile and n‐butyl acrylate, respectively. The reactivity ratios determined by the modified Kelen–Tudos method were rA = 1.29 ± 0.01 and rB = 0.67 ± 0.01. 13C{1H} NMR and distortionless enhancement by polarization transfer (DEPT‐45, 90, and 135) were used to distinguish methyl, methylene, methine, and quaternary carbon resonance signals. The overlapping and broad signals of the copolymers were assigned completely to various compositional and configurational sequences by the correlation of one‐dimensional (1H, 13C{1H}, and DEPT) and two‐dimensional (heteronuclear single quantum coherence, total correlation spectroscopy, and heteronuclear multibond correlation) NMR spectral data. The complete spectral assignments of carbonyl and nitrile carbons were performed with the help of heteronuclear multibond correlation spectra. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2810–2825, 2005  相似文献   

2.
Acrylonitrile/pentyl acrylate (A/P) copolymers of different monomer composition were prepared by solution polymerization using benzoyl peroxide as initiator. Copolymer compositions were determined by elemental analysis and quantitative 13C1H‐NMR spectroscopy. The comonomer reactivity ratios, determined by both Kelen Tudos (KT) and nonlinear error in variables (EVM) methods are rA = 0.75 and rp = 0.45. 2‐D heteronuclear correlation spectroscopy (HSQC) was used to simplify the complex 1H spectra of A/P copolymers in terms of configurational and compositional sequences. The microstructure was obtained in terms of the distribution of A‐ and P‐ centered triad sequences from 13C1H‐NMR spectra of the copolymers. The copolymerization mechanism was found to follow a first order Markov Model. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 533–543, 1999  相似文献   

3.
Glycidylmethacrylate/vinyl acetate copolymers were prepared by solution polymerization with benzene as a solvent and benzoyl peroxide as an initiator. Copolymer compositions were determined from 1H NMR spectra, and comonomer reactivity ratios were determined by the Kelen–Tudos (KT) method and the nonlinear least‐squares error‐in‐variable method (EVM). The reactivity ratios obtained from KT and EVM were rG = 37.4 ± 12.0 and rV = 0.036 ± 0.019 and rG = 35.2 and rV = 0.03, respectively. Complete spectral assignments of 13C and 1H NMR spectra were done with the help of distortionless enhancement by polarization transfer and two‐dimensional 13C–1H heteronuclear single quantum coherence and total correlation spectroscopy. The methyl, methine, and methylene carbon resonance showed both stereochemical and compositional sensitivity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4051–4060, 2001  相似文献   

4.
Terpolymers of acrylonitrile (A), methyl methacrylate (B), and methyl acrylate (M) were synthesized under optimized atom transfer radical polymerization conditions using 2‐bromopropionitrile as an initiator and CuBr/dinonyl bipyridine as a catalyst. Variation of the feed composition led to terpolymers with different compositions. Composition of synthesized terpolymers were calculated from quantitative 13C{1H} NMR spectra. Number average molecular weight and polydispersity index were determined by gel permeation chromatography. The overlapping and broad signals of the terpolymers were assigned completely to various compositional and configurational sequences by correlation of one‐dimensional 1H, 13C{1H}, and distortionless enhancement by polarization transfer and two‐dimensional heteronuclear single quantum coherence (HSQC) and total correlation spectroscopy (TOCSY). 2D HSQC NMR study shows one to one correlation between carbon and proton signals, while 2D TOCSY spectra were used to confirm 1, 2 bond geminal couplings between nonequivalent protons of same methylene group. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 25–37, 2009  相似文献   

5.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

6.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

7.
Copolymers of styrene and methyl methacrylate were synthesized by atom transfer radical polymerization using methyl 2‐bromopropionate as initiator and CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalyst. Molecular weight distributions were determined by gel permeation chromatography. The composition of the copolymer was determined by 1H NMR. The comonomer reactivity ratios, determined by both Kelen–Tudos and nonlinear error‐in‐variables methods, were rS = 0.64 ± 0.08, rM = 0.63 ± 0.08 and rS = 0.66, rM = 0.65, respectively. The α‐methyl and carbonyl carbon resonances were found to be compositionally and configurationally sensitive. Complete spectral assignments of the 1H and 13C NMR spectra of the copolymers were done by distortionless enhancement by polarization transfer and two‐dimensional NMR techniques such as heteronuclear single quantum coherence and heteronuclear multiple quantum coherence. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2076–2085, 2006  相似文献   

8.
Ethyl acrylate (E)/methyl methacrylate (M) copolymers of different compositions were prepared, and their compositions were determined with 1H NMR spectra. The complete spectral assignments, in terms of the compositional and configurational sequences of these copolymers, were made with the help of distortionless enhancement by polarization transfer and two‐dimensional heteronuclear single quantum coherence spectroscopy. The α‐(CH3)M, ? CH (E), ? CH2, and 〉C?O carbons of both M and E units were found to be sensitive to various compositional and configurational sequences. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 313–326, 2003  相似文献   

9.
Poly(isobutylene‐co‐p‐methylstyrene) is an important precursor to Exxpro™ elastomers. A previous report detailed the characterization of both the proton and the carbon NMR spectra of the copolymer. 1 However, several resonances in the proton NMR spectrum of the copolymer were not assigned. Specifically, the proton methine resonance of the BSB triad sequence is now identified and used to calculate BSB triad contribution to the copolymer microstructure. This report describes the assignment of this resonance and other resonances associated with microstructural sequence distribution around p‐methylstyrene. The proton NMR signals of interest resonate at 2.8 ppm and 2.5 ppm in a typical spectrum for poly(isobutylene‐co‐p‐methylstyrene). The nature of these resonances were determined by preparation and characterization of specifically deuterated poly(isobutylene‐co‐p‐methylstyrene)s employing both one and two dimensional NMR techniques. The 2.8 ppm signal is assigned as the methine proton of a p‐methylstyrene incorporated between two isobutylene units (the BSB triad). The signal at 2.5 ppm is assigned to the meso‐BSS triad. Determination of these resonances allows for rapid evaluation of isolated p‐methylstyrene units (BSB triads) present in the copolymer using only 1H NMR. The utility of this technique is demonstrated by comparing BSB triad values determined by 1H and 13C NMR analysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1680–1686, 2000  相似文献   

10.
A novel copolymer of vinylidene cyanide (VCN) and 2,2,2‐trifluoroethyl methacrylate (MATRIF) was synthesized by bulk free radical process in a 52% yield from an equimolar comonomer feed. The copolymer's composition and microstructure were analyzed by FTIR, 1H‐ and 13C‐NMR spectroscopy, SEC, and elemental analysis. The reactivity ratios calculated from both the Q‐e Alfrey‐Price parameters and the Jenkins' Patterns Scheme indicate a tendency to alternation in the copolymerization, the latter method suggesting that MATRIF homopropagation be slightly favoured (rV = r12 = 0.1, rM = r21 = 0.3). The molar incorporation of VCN in the copolymer was only 42 mol % according to the 9.0 wt % nitrogen content determined by elemental analysis, in good agreement with the value obtained by 1H‐NMR. High‐resolution 1H and 13C‐NMR spectra were used to study the microstructure of the copolymer. As an example, the three well‐resolved carbonyl resonances in the 13C‐NMR spectrum were assigned to the MATRIF‐centered triads VMV, VMM, and MMM, respectively, (V and M stand for VCN and MATRIF, respectively). The presence of VCN dyads (e.g., in VVM and VVV sequences) was shown to be marginal or absent altogether. Thermogravimetric analysis of poly(VCN‐co‐MATRIF) copolymer showed good thermal stability, and its main pyrolytic degradation taking place only above 368 °C. A 4% weight loss at about 222 °C suggested the presence of a few VCN homodyads, possibly inducing thermal depolymerization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
The configurational assignment of poly(vinylpyrrolidone) (PVP) prepared by peroxide-initiated solution polymerization was studied by the combination of one- and two-dimensional NMR spectroscopy. The broad and overlapping 1H-NMR and 13C{1H}-NMR spectra of PVP were assigned to the configurational triad, pentad (CH, 2CH2, 3CH2, and 4CH2 regions), and tetrad (β-CH2 region) sequences. The configurational assignments of the various carbon resonances were confirmed with the help of two-dimensional experiments such as heteronuclear single quantum correlation (HSQC), heteronuclear single quantum correlation–total correlation spectroscopy (2-D HSQC–TOCSY). The various geminal and vicinal couplings within the configurational sequences were assigned with the help of total correlation spectroscopy (TOCSY low mixing time). The propagation pathway was studied using the 13C{1H}-NMR (carbonyl carbon) and 15N{1H}-NMR spectra. The 15N{1H} resonance signals were assigned to pentad-level configurational sequences. The results obtained by the analysis of the area under the resonance signals confirmed that poly(vinylpyrrolidone) obeys Bernoullian statistics. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3922–3928, 1999  相似文献   

12.
Copolymers of methyl methacrylate (MMA) and n‐butyl acrylate (n‐BA) were synthesized under atom transfer radical polymerization (ATRP) conditions. The molar infeed ratio was varied to obtain copolymers with different compositions. Methyl 2‐bromo propionate was used as the initiator with CuBr/Cu(0)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalyst at 60 °C. Molecular weight distribution was determined by gel permeation chromatography (GPC). Copolymer compositions (FM) were calculated from 1H NMR spectra. Reactivity ratios calculated with the Mao–Huglin terminal model at a high conversion were found to be rM = 2.17 and rB = 0.47. The polymerization mechanism was studied with the α‐methyl region of MMA. The backbone methylene and carbonyl carbons of both MMA and n‐BA units were found to be compositionally as well as configurationally sensitive. Complete spectral assignments were performed with the help of heteronuclear single quantum coherence (HSQC) spectroscopy along with total correlated spectroscopy (TOCSY). Further, the assignments of the carbonyl region were made with the help of heteronuclear multiple quantum coherence (HMBC) spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1100–1118, 2005  相似文献   

13.
The incremental method of the chemical shift calculation in the 13C NMR spectra of the methyl methacrylate–ethyl acrylate copolymer, PMMA/EA, has been applied to the β‐CH2 carbons. A positive simulation of the DEPT sub‐spectrum shows that it is possible to determine in this way the distribution of configurational‐compositional tetrads providing a tool for microstructure analysis of acrylic copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2147–2155, 2000  相似文献   

14.
Copolymerization of acrylonitrile and ethyl methacrylate using atom transfer radical polymerization (ATRP) at ambient temperature was carried out under optimized reaction conditions using 2‐bromopropionitrile as initiator and CuBr/2,2′‐bipyridine as the catalyst system. The copolymer composition, obtained from 1H NMR spectra, were used to determine the monomer reactivity ratios (rA = 0.68 and rE = 1.75) involved in ATRP. Two‐dimensional NMR (heteronuclear single quantum correlation and total correlated spectroscopy) experiments were employed to resolve the highly overlapping and complex 1H and 13C{1H} NMR spectra of copolymers. The complete spectral assignments of the quaternary carbons viz. carbonyl and nitrile carbons were done with the help of heteronuclear multiple bond correlation spectra. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2955–2971, 2006  相似文献   

15.
Carboxylic acid chloride end‐functionalized all‐aromatic hyperbranched polyesters were prepared from the bulk polycondensation of the AB2 monomer 5‐(trimethylsiloxy)isophthaloyl dichloride. The acid chloride end functionality of the hyperbranched polyester was modified in situ with methanol and yielded methyl ester ends in a one‐pot process. Chain‐end functionalization and esterification were quantitative according to both potentiometric titration and 1H NMR analysis. The signals of 1H and 13C NMR spectra of the esterified hyperbranched polyester were fully assigned from model compounds of the focal, linear, dendritic, and terminal units. The degree of branching and molecular weight averages measured by 1H and 13C NMR spectroscopy and multidetector size exclusion chromatography increased systematically with increasing polymerization temperatures between 80 and 200 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2855–2867, 2002  相似文献   

16.
Proton and Carbon-13 NMR spectra of ethyl α-benzoyloxymethylacrylate (E)–methyl methacrylate (M) copolymers were analyzed in terms of sequence distribution and stereoregularity of monomer units. The copolymers were prepared by free radical polymerization in benzene at 50°C. The methoxy region of the M proton signal resonance was found to be sensitive to the copolymer composition for M-centred sequences. The carbon-13 NMR spectra of the EM copolymers, in particular the carbonyl signal resonances of carbomethoxy and carboethoxy groups, are discussed in terms of M- and E-centred configurational sequences. The experimental values were in excellent agreement with those calculated taken into account the terminal copolymerization model and Bernoullian distribution of stereoregularity with the statistical parameters determined from reactivity ratios rE = 0.32 and rM = 1.34 and the coisotacticity parameters σMM = 0.22, σEE = 0.70, and σME = σEM = σ = 0.30. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3483–3493, 1997  相似文献   

17.
The new monomer N′‐(β‐methacryloyloxyethyl)‐2‐pyrimidyl‐(p‐benzyloxy‐ carbonyl)aminobenzenesulfonamide (MPBAS) (M1) is synthesized using sulfadiazine as parent compound. It could be homopolymerized and copolymerized with N‐phenyl maleimide (NPMI) (M2) by radical mechanism using AIBN as initiator at 60 °C in dimethylformamide. The new monomer MPBAS and polymers were identified by IR, element analysis and 1H NMR in detail. The monomer reactivity ratios in copolymerization were determined by YBR method, and r1 (MPBAS) = 2.39 ± 0.05, r2 (NPMI) = 0.33 ± 0.02. In the presence of ammonium formate, benzyloxycarbonyl groups could be broken fluently from MPBAS segments of copolymer by catalytic transfer hydrogenation, and the copolymer with sulfadiazine side groups are recovered. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2548–2554, 2000  相似文献   

18.
To further extend temperature range of application and low temperature performance of the ethylene‐styrene copolymers, a series of poly(ethylene‐styrene‐propylene) samples with varying monomer compositions and relatively low glass‐transition temperatures (Tg = −28 – 22 °C) were synthesized by Me2Si(Me4Cp)(N‐t‐Bu)TiCl2/MMAO system. Since the 13C NMR spectra of the terpolymers were complex and some new resonances were present, 2D‐1H/13C heteronuclear single quantum coherence and heteronuclear multiple bond correlation experiments were conducted. A complete 13C NMR characterization of these terpolymers was performed qualitatively and quantitatively, including chemical shifts, triad sequence distributions, and monomer average sequence lengths. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 340–350  相似文献   

19.
Copolymers of 2‐methylene‐1,3‐dioxepane (MDO) and methyl acrylate (MA) containing ester units both in the backbone and as pendant groups were synthesized by free‐radical copolymerization. The influence of reaction conditions such as the polymerization time, temperature, initiator concentration, and comonomer feed ratio on the yield, molecular weight, and copolymer composition was investigated. The structure of the copolymers was confirmed by 1H NMR, 13C NMR, and IR spectroscopy. Differential scanning calorimetry indicated that the copolymers had a random structure. An NMR study showed that hydrogen transfer occurred during the copolymerization. The reactivity ratios of the comonomers were rMDO = 0.0235 and rMA = 26.535. The enzymatic degradation of the copolymers obtained was carried out in the presence of proteinase K or a crude enzyme extracted from earthworms. The experimental results showed that the higher ester molar percentage in the backbone caused a faster degradation rate. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2898–2904, 2003  相似文献   

20.
Trans-4-methacryloyloxyazobenzene/Vinylidene Chloride (M/V) copolymers of different monomer concentrations were prepared by solution polymerization using benzoyl peroxide as an initiator. The copolymer composition was determined from the 13C{1H}-NMR spectrum. The quaternary carbon of M- and V-centered resonances were used for determining the sequences in terms of the distribution of M- and V-centered triads. The sequence distribution of M- and V-centered triads determined from 13C{1H}-NMR spectra of the copolymer is in good agreement with the triad concentration calculated from the statistical model. The comonomer reactivity ratios, determined by both the Kelen Tudos (KT) and the nonlinear error in variables (EVM) methods are rM = 3.59 ± 0.19, rV = 0.89 ± 0.07; rM = 3.76, and rV = 0.93, respectively. 13C Distortionless Enhancement by Polarization Transfer (DEPT) spectrum was used to differentiate between the resonance signals of M- and V-methylene and methyl carbon units. Assignments to the methylene resonance signals have been assigned up to the tetrad levels using 2D HSQC experiments. The geminal couplings in the methylene proton region is shown in the 2D DQF-COSY spectrum. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3179–3185, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号