首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical rejuvenation is known to dramatically alter the deformation behavior of amorphous polymers. Polystyrene (PS)—for example, typically known as a brittle polymer—can be rendered ductile by this treatment, while a ductile polymer like polycarbonate (PC) shows no necking anymore and deforms homogeneously in tensile deformation. The effects are only of temporary nature, as because of physical aging the increasing yield stress, accompanied by intrinsic strain softening, renders PS brittle after a few hours, while for PC necking in tensile testing returns in a few months after the mechanical rejuvenation treatment. In this study, it is found that physical aging upon rejuvenation in both PS and PC can be delayed in two different ways: (1) by reducing the molecular mobility through antiplasticization and (2) by applying toughening agents (rubbery core–shell particles). For the first route, even though progressive aging is found to decrease with increasing amounts of antiplasticizer added, dilution of the entanglement network results in enhanced brittleness. Besides antiplasticization effects, also some typical plasticization effects are observed, like a reduction in matrix Tg. For the second route, traditional rubber toughening using acrylate core–shell modifiers also results in a reduced yield stress recovery, and ductile tensile deformation behavior is observed even 42 months after mechanical rejuvenation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 134–147, 2008  相似文献   

2.
Poly(l ‐lactic acid) (PLLA) is a bio‐degradable polyester which exhibits brittle behaviour due to relatively fast physical ageing of the amorphous phase. This work describes the effects of thermal rejuvenation and molecular orientation of the amorphous phase on this physical ageing process. Uniaxial compression testing showed that physical ageing of the amorphous phase increases the yield stress and the associated strain softening response, both contributing to the observed embrittlement of PLLA in tension. Molecular orientation at constant crystallinity was applied by uniaxial and biaxial plastic deformation just above the glass transition temperature, up to plastic strains of 200% to avoid strain‐induced crystallisation. Using stress‐relaxation experiments combined with tensile testing, both as a function of ageing time, it is shown that both uniaxial and biaxial plastic deformation in excess of 150% plastic strain, decelerates and possibly prohibits the physical ageing process. The oriented monofilaments and films have improved mechanical properties such as stiffness, strength and strain‐to‐break, which were not affected by physical ageing during the whole testing period (40 days). In addition, plastic deformation to higher draw ratios and/or higher temperatures strongly enhanced crystallinity and resulted in PLLA monofilaments and films that also exhibited tough behaviour, not affected by physical ageing. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2233–2244  相似文献   

3.
An algorithm is introduced for the molecular simulation of constant-pressure plastic deformation in amorphous solids at zero temperature. This allows to directly study the volume changes associated with plastic deformation (dilatancy) in glassy solids. In particular, the dilatancy of polymer glasses is an important aspect of their mechanical behavior. The new method is closely related to Berendsen's barostat, which is widely used for molecular dynamics simulations at constant pressure. The new algorithm is applied to plane strain compression of a binary Lennard-Jones glass. Conditions of constant volume lead to an increase of pressure with strain, and to a concommitant increase in shear stress. At constant (zero) pressure, by contrast, the shear stress remains constant up to the largest strains investigated (ε = 1), while the system density decreases linearly with strain. The linearity of this decrease suggests that each elementary shear relaxation event brings about an increase in volume which is proportional to the amount of shear. In contrast to the stress–strain behavior, the strain-induced structural relaxation, as measured by the self-part of the intermediate structure factor, was found to be the same in both cases. This suggests that the energy barriers that must be overcome for their nucleation continually grow in the case of constant-volume deformation, but remain the same if the deformation is carried out at constant pressure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2057–2065, 2004  相似文献   

4.
The strain hardening modulus, defined as the slope of the increasing stress with strain during large strain uniaxial plastic deformation, was extracted from a recently proposed constitutive model for the finite nonlinear viscoelastic deformation of polymer glasses, and compared to previously published experimental compressive true stress versus true strain data of glassy crosslinked poly(methyl methacrylate) (PMMA). The model, which treats strain hardening predominantly as a viscous process, with only a minor elastic contribution, agrees well with the experimentally observed dependence of the strain hardening modulus on strain rate and crosslink density in PMMA, and, in addition, predicts the well-known decrease of the strain hardening modulus in polymer glasses with temperature. General scaling aspects of continuum modeling of strain hardening behavior in polymer materials are also presented. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1464–1472, 2010  相似文献   

5.
In this study, polycarbonate (PC) and polystyrene (PS) are subjected to plastic deformation by means of cold rolling and the resulting variation of the free volume and its subsequent time evolution after rolling is investigated by means of positron annihilation lifetime spectroscopy (PALS). The value of the long lifetime component that is attributed to the decay of ortho-positronium (tau(o-Ps)) and its intensity (I(o-Ps)) are used to characterize, respectively, the size and the concentration of the free-volume holes. In addition to the PALS experiments, the effect of plastic deformation on the dynamic tensile modulus is investigated. The PALS results show that both for well-aged PC and PS an increase of tau(o-Ps) and a decrease of I(o-Ps) occur upon plastic deformation. During the subsequent aging, tau(o-Ps) tends to return to the value assumed before plastic deformation, while I(o-Ps) remains constant with time. These results corroborate the idea of an amorphous-amorphous transition, rather than that of a "mechanical rejuvenation" as proposed in the past to explain the ability of plastic deformation to reinitiate physical aging. Finally, a linear relation between the size of the free-volume holes and the dynamic tensile modulus is found, which suggests that the stiffness of amorphous glassy polymers is fully determined by their nanoscopic structure.  相似文献   

6.
Understanding and controlling physical aging below the glass transition temperature (Tg) is very important for the long‐term performance of plastic parts. In this article, the effect of grafted silica nanoparticles on the physical aging of polycarbonate (PC) below the Tg is studied by using the evolution of the enthalpy relaxation and the yield stress. The nanocomposites were found to reach a thermodynamic equilibrium faster than unfilled PC, implying that physical aging is accelerated in presence of grafted nanosilica particles. The Tool‐Narayanaswamy‐Moynihan model shows that the aging is accelerated by the grafted silica nanoparticles, but the molecular mechanism responsible for physical aging remains unaltered. Furthermore, dynamic mechanical analysis shows that the kinetics of physical aging can be related to a free volume distribution or a local attraction‐energy distribution as a result of the change in mobility of the polymer chain. Finally, a qualitative equivalence is observed in the physical aging followed by both the enthalpy relaxation and yield stress. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2069–2081  相似文献   

7.
The mechanism of deformation in glasses is very different from that of crystals, even though their general behavior is very similar. In this study, we investigated the deformation of polycarbonate on the atomistic scale with molecular dynamics and on the continuum scale with a new simulation approach. The results indicated that high atomic/segmental mobility and low local density enabled the formation (nucleation) of highly deformed regions that grew to form plastic defects called plastic shear transformations. A continuum-scale simulation was performed with the concept of plastic shear transformations as the basic region of deformation. The continuum simulations were able to predict the primary and secondary creep behavior. The slope of the secondary creep depended on the interactions between the plastic shear transformations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 994-1004, 2005  相似文献   

8.
Polycarbonate (PC) was blended with acrylic impact modifiers (AIMs). The effects of modifiers weight fraction on the Izod impact strength and yield strength of PC/AIM blends were investigated. The samples with 4% modifiers were aged under the Tg of PC in an air‐circulating oven, and the effects of aging time on impact strength, yield strength, modulus, elongation at break, post yield stress drop (PYSD) values, and morphology of fracture surface were investigated. The effects of aging time on the shape of stress–strain curve were also investigated. The aged samples were heat‐treated over the Tg of PC to erase the effects of physical aging. It was found that the drop of impact strength caused by physical aging can be recovered, the increment of yield strength and PYSD value caused by physical aging can only be partly recovered, and the heat‐treatment over the Tg of PC caused further increment of modulus. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2715–2724, 2005  相似文献   

9.
The performance of electronics on flexible substrates suffers under substrate bending leading to reduced device performance. In this article, we highlighted the influence of bending strain on a conductive polymer composite gas sensor and developed a model to investigate the influence of strain. We evaluated the strain influence on the resistance of a gas sensor with respect to sensitivity, filler content, cyclic loading, and electrode orientation. The sensitivity of gas sensors increased with decreasing tensile bending radii. The influence of strain was dominant for gas sensors with less carbon black concentration. Cyclic bending tests showed a decrease of sensor resistance versus time and a plastic deformation. A sensor geometry orientations effect to reduce the sensitivity to bending strain was achieved by aligning the electrode fingers parallel to the strain. A model was successfully implemented to simulate strain influences inside the polymer incorporating the Poisson ratio. We suggest a concept to achieve a strain insensitive gas sensor by creating an orientation between single particles inside the composite. Implementing this results into existing gas sensors will improve the measurement quality and reliability of sensors on flexible substrates. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

10.
The cavitation phenomenon accompanies the tensile deformation of most semicrystalline polymers when negative pressure inside the amorphous phase is generated. Over the years, this phenomenon has been marginalized, due to the common belief that it does not have any significant influence on the properties or micromechanisms activated during plastic deformation of such materials. In this article, for the first time, the influence of the cavitation phenomenon on the value of yield stress/strain, the intensity of the lamellae fragmentation process, the reorientation dynamics of the crystalline and amorphous component, the degree of crystals orientation at selected stages of deformation, and the amount of heat generated as a result of activating characteristic micromechanisms of plastic deformation were systematically analyzed. The research has been conducted for cavitating/non‐cavitating polypropylene model systems with an identical structure of crystalline component during their tensile deformation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1853–1868  相似文献   

11.
This paper reports the theoretical prediction and experimental verification of the connection between the yield stress of amorphous polymers and the physical aging phenomenon. The analysis reveals the existence of a fundamental relationship between the nonequilibrium glassy state and the thermally activated process controlling viscoelastic and plastic deformation. The results show that the volume relaxation and deformation kinetics share the same relaxation times, and that the activation energy for deformation below Tg is much smaller than previously mentioned in the literature. This indicates that the phenomenon of physical aging plays a very important role in the deformation and processing of polymers at low temperatures. The effect of quenching and annealing on the yield stress is described in terms of the mean energy of hole formation, the departure of volume from its equilibrium state, the distribution of hole energies, and lattice volume. The same set of molecular parameters obtained from the molecular kinetic theory of the glass transition and volume relaxation predicts the yield stress as a function of cooling rate, annealing time, temperature, and strain rate.  相似文献   

12.
The influence of cooling rate on the structure and resulting mechanical performance is explored for a set of isotactic polypropylenes with varying molecular weight, insertion of counits, and addition of a nucleating agent. A continuous variation of crystal type (α–mesomorphic phase competition) and structural features is obtained with cooling rate. These variations are discussed in relation to the strain rate‐ and temperature‐dependent yield stress and time‐to‐failure kinetics. The deformation kinetics, characterized by constant activation volumes and energies in the Ree–Eyring theory, prove to be the same for various structures. Differences in thermal history are solely captured by two rate constants that are function of the structure. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

13.
14.
Understanding the deformational and failure behaviors of thermoplastic semicrystalline polymers is crucial due to the practical usages in various engineering applications. Taking isotactic polypropylene (iPP) as a semicrystalline polymer model system, atomistically informed coarse‐grained (CG) molecular dynamics (MD) simulations are employed to investigate the creep behavior of iPP. The simulations reveal that there exists a threshold stress of about 20.0 MPa, above which the maximum strain of iPP within the simulation time span increases dramatically. From the strain‐time analysis, it is observed that the iPP exhibits an initial elastic deformation stage and a subsequent plastic stage at lower stress levels, while a three‐stage creep behavior including a third fracture stage is observed at higher stress levels. Specifically, at lower stress levels, the bonded energy increases continuously as the chains stretch steadily, while the nonbonded energy shows an initial increase followed by a steady decrease due to the interchain sliding. At higher stress levels, both bonded and nonbonded energies change dramatically at the third stage, resulting from accelerated chain stretching, unfolding, sliding, and breaking. This study provides physical insight into the creep behavior of iPP at a fundamental molecular level and highlights the important role of microstructural evolution of chains in the deformation of semicrystalline polymer materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1779–1791  相似文献   

15.
《European Polymer Journal》1996,32(9):1061-1066
The elongational deformation properties of polyethylene terephthalate (PETP) and bisphenol-A polycarbonate (PC) blends were determined using a Rutherford elongational rheometer. The effects of temperature (in the thermoelastic region) and strain rate were studied on blends containing up to 50% PC. Addition of low levels of polycarbonate permits the thermoelastic processing of PETP over a wider temperature range. PETP is particularly sensitive to changes in temperature. Over the range studied, the effect of strain rate on elongational deformation is not very marked. However, the deformation temperature changes the strain levels at which strain stiffening occurs, an important observation in respect of processing and optimisation of physical properties of uniaxially oriented products. The effect of the addition of a phenoxy resin on the blend was studied, and although TEM analysis suggests that it did not compatibilise the blend, it did increase the available extension at higher temperatures.  相似文献   

16.
A deep analogy between the processes of low-temperature thermally induced relaxation of plastic deformation in amorphous polymers and inorganic glasses is observed. The results of the calculation of the activation energy and activation volume of this relaxation process in terms of the excited state model satisfactorily agree with the experimental data obtained for both epoxy polymer systems and sheet silicate glasses. This evidence allows us to conclude that the initial stage of macroscopic plastic deformation in glassy systems involves small critical displacements of excited atoms (groups of atoms) that are provided by local rearrangements of neighboring particles (entropy fluctuations). In the vicinity of the yield point, the number of excited atoms per unit volume induced by the action of mechanical stresses appears to be quite sufficient (1026–1027 m?3) for promotion of a marked plastic deformation of glasses and preservation of appreciable amounts of internal energy.  相似文献   

17.
The potential energy landscape of a polymer glass is examined with regard to plastic deformation under shear strain. Shear strain is found to cause the disappearance of local potential energy minima, as determined by the decrease to zero of the curvature of the local minima. If the local energy minimum which the system is in disappears, the system becomes mechanically unstable and is forced to relax to an alternate energy minimum. This mechanical instability, which leads to a discontinuous change in system properties, is inherently irreversible—the new local minimum will not disappear, in general, when the strains are reversed. These disappearances of local energy minima and the associated irreversible relaxations lead to plastic deformation in polymer glasses.  相似文献   

18.
The anisotropic mechanical response of oriented polymer glasses is studied through simulations with a coarse-grained model. Systems are first oriented by uniaxial compression or tension along an axis. Then the mechanical response to subsequent deformation along the same axis or along a perpendicular axis is measured. As in experiments, the flow stress and strain hardening modulus are both larger when deformation increases the degree of molecular orientation produced by prestrain, and smaller when deformation reduces the degree of orientation. All stress curves for parallel prestrains collapse when plotted against either the total integrated strain or the degree of molecular orientation. Stress curves for perpendicular prestrains can also be collapsed. The stress depends on the degree of strain or molecular orientation along the final deformation axis and is independent of the degree of orientation in the perpendicular plane. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1473–1482, 2010  相似文献   

19.
Oriented high‐density polyethylene (HDPE), prepared by melt extrusion drawing, has been employed to address the correlation between cavitation and lamellar fragmentation at large strain. This has been done by investigating the volume strain, elastic recovery properties, and microscopic morphology. The results indicate that the reversible volume strain becomes saturation at a true strain of about 0.3, which is essentially consistent with the critical one related to lamellar fragmentation (point C). Morphological observations on the deformed samples provide structural insights into above deformation behaviors. Enlarged voids are hard to recover due to dominant plastic deformation of crystals once lamellar fragmentation sets in and thus a transition of reversible volume strain with strain is presented. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1202–1206, 2008  相似文献   

20.
The plasticity of semicrystalline polymers is analyzed in the framework of Young's dislocation model under the assumption of nucleation of screw dislocations from the lateral surface of the crystalline lamellae. It is proposed that the driving force for the nucleation and propagation across the crystal width of these screw dislocations relies on chain twist defects that migrate along the chains stems and allow a step‐by‐step translation of the stems through the crystal thickness. Such defects are identified as thermally activated conformational defects responsible for the so‐called crystalline relaxation. Dislocation kinetic equations are derived. Plastic flow rates attainable by dislocation motion in polyethylene and polypropylene are assessed with frequency–temperature data of the crystalline relaxation. Comparisons are made with experimental strain rates that enable homogeneous plastic deformation. In addition to temperature, the crystal lamellar thickness, which is a basic factor of the plastic flow stress in Young's dislocation model, is a major factor in dislocation kinetics through its influence on chain twist activation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 593–601, 2002; DOI 10.1002/polb.10118  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号