首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Mesoporous silica particles were grafted with thermoresponsive poly(ethyleneoxide‐b‐N‐vinylcaprolactam), PEO‐b‐PVCL. N‐vinylcaprolactam was first polymerized on particle surfaces using surface initiated atom transfer radical polymerization (SI‐ATRP) and then, the poly(ethyleneoxide) blocks were attached to the PVCL chain ends with click chemistry. The sizes, thermoresponsiviness, and colloidal stability of SiO2‐PVCL and SiO2‐PVCL‐b‐PEO particles and their aqueous dispersions were studied by scanning electron microscopy, turbidimetry, dynamic light scattering, zeta sizer, and microcalorimetry. The phase separation temperature of the PEO‐b‐PVCL grafted particles did not considerably differ from that of the SiO2‐PVCL particles. The zeta potential of the grafted particles was close to zero at room temperature but decreased strongly upon heating. The decrease is related to the collapse of the PVCL blocks and correspondingly, the exposure of the silica surface toward the aqueous phase. The colloidal stability of the particles could be enhanced by adding PEO blocks to the chain ends of the PVCL grafts. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5012–5020  相似文献   

2.
Four generations of new amphiphilic thermoresponsive linear‐dendritic block copolymers (LDBCs) with a linear poly(N‐vinylcaprolactam) (PNVCL) block and a dendritic poly(benzyl ether) block are synthesized by atom transfer radical polymerization (ATRP) of N‐vinylcaprolactam (NVCL) using dendritic poly(benzyl ether) chlorides as initiators. The copolymers have been characterized by 1H NMR, FTIR, and GPC showing controlled molecular weight and narrow molecular weight distribution (PDI ≤ 1.25). Their self‐organization in aqueous media and thermoresponsive property are highly dependent on the generation of dendritic poly(benzyl ether) block. It is observed for the LDBCs that the self‐assembled morphology changes from irregularly spherical micelles, vesicles, rod‐like large compound vesicles (LCVs), to the coexistence of spherical micelles and rod‐like LCVs, as the generation of the dendritic poly(benzyl ether) increases. The results of a cytotoxicity study using an MTT assay method with L929 cells show that the LDBCs are biocompatible. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 300–308  相似文献   

3.
Controlled radical polymerization of N‐vinylcaprolactam (NVCL) via reversible addition‐fragmentation chain transfer (RAFT) polymerization or macromolecular design via the interchange of xanthate (MADIX) was described, employing 2‐diphenylthiocarbamoylsulfanyl‐2‐methyl‐propionic acid (CTA1), ((O‐ethylxanthyl)methyl)benzene (CTA2) and (1‐(O‐ethylxanthyl)ethyl)benzene (CTA3) as chain transfer agents (CTA). It was found that all the CTAs led to controlled radical polymerization of NVCL, with the molecular weight increased along with the conversion of monomer and a relatively narrow molecular weight distribution could be obtained, as determined with matrix‐assisted laser desorption and ionization time‐of‐flight (MALDI‐TOF) and gel permeation chromatography (GPC), the polydispersity indices, as determined by MALDI‐TOF, were typically on the order of 1.24, but the polymerization did not proceed in a strictly living manner. The chain transfer ability of these CTAs was in the following order: CTA1 ≈ CTA2 < CTA3. MALTI‐TOF measurement showed that the major population of polymer retained the chain‐end functional group, but minor population deactivated by radical coupling. In preparation of the block copolymer of NVCL and vinyl acetate (VAc) by sequential polymerization, the sequence of monomer addition was important. Using VAc as the first monomer could lead to a block copolymer presenting a unimodal GPC trace and a narrow PDI index, and if NVCL was used as the first monomer, the polymerization was less well controlled. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3756–3765, 2008  相似文献   

4.
Poly(N‐vinylcaprolactam) (PNVCL) star‐shaped polymers with four arms and carboxyl end groups were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization of N‐vinylcaprolactam (NVCL) employing a tetrafunctional trithiocarbonate as an R‐RAFT agent. The resulting star polymers were characterized using 1H NMR, FT‐IR, gel permeation chromatography (GPC), and UV–vis. Molecular weight of star polymers were analyzed by GPC and UV–vis being observed that the values obtained were very similar. Furthermore, the thermosensitive behavior of the star polymers was studied in aqueous solution by measuring the lower critical solution temperature by dynamic light scattering. Star‐shaped PNVCL were chain extended with ethyl‐hexyl acrylate (EHA) to yield star PNVCL‐b‐PEHA copolymers with an EHA molar content between 4% and 6% proving the living character of the star‐shaped macroCTA. These star block copolymers form aggregates in aqueous solutions with a hydrodynamic diameter ranged from 170 to 225 nm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2156–2165  相似文献   

5.
Thermo‐sensitive amphiphilic copolymers, PVCL‐PTrpAMT and PVCL‐PVP‐PTrpAMT of hydrophilic N‐vinylcaprolactam (VCL), N‐vinylpyrrolidone (NVP), and hydrophobic Nt‐Boc‐tryptophanamido‐N′‐methacryl thioureas (TrpAMT) monomers, were synthesized and characterized by 1H NMR, UV‐spectroscopy, and GPC‐MALLS. The cloud point (CP) measurement showed that hydrophobic PTrpAMT and hydrophilic PVP segments significantly altered the phase transition temperature of PVCL with comparable molecular weight in aqueous solution. The CP of PVP‐PTrpAMT solution was 38.0°C, lower by 5.0°C than that of unmodified PVCL. In the presence of phosphate buffer saline (PBS), the CP value of the PVCL polymer decreased by ~2.0°C in comparison to that of the aqueous solution. Fluorescent spectroscopy and TEM studies revealed that PVCL‐PTrpAMT and PVCL‐PVP‐PTrpAMT self‐assembled into the spherical micelles, 30–70 nm in diameter, at concentrations over their CMCs in an aqueous solution. Cytotoxicity tests demonstrated that the PVCL copolymers were not harmful to cell viability, which may favor the use of the copolymers as potential thermo‐sensitive polymers in pharmaceutical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Poly(N‐vinylcaprolactam) (PVCL) is well known for its thermoresponsive behavior in aqueous solutions. PVCL combines useful and important properties; it is biocompatible polymer with the phase transition in the region of physiological temperature (32–38 °C). This combination of properties allows consideration of PVCL as a material for design biomedical devices and use in drug delivery systems. In this work, PVCL based temperature‐sensitive crosslinked particles (microgels) were synthesized in a batch reactor to analyze the effect of the crosslinker, initiator, surfactant, temperature, and VCL concentration on polymerization process and final microgels characteristics. The mean particle diameters at different temperatures and the volume phase‐transition temperature of the final product were analyzed. To obtain information about the inner structure of microgel particles, semicontinuous polymerizations were carried out and the evolution of the hydrodynamic average particle diameters at different temperatures of the microgel synthesized was investigated. In the case of microgel particles obtained in a batch reactor the size and the swelling‐de‐swelling behavior as a function of the temperature of the medium can be tuned by modulating the reaction variables. When the microgel particles were synthesized in a semibatch reactor different swelling‐de‐swelling behaviors were observed depending on particles inner structure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2510–2524, 2008  相似文献   

7.
We report on novel diblock copolymers of poly(N‐vinylcaprolactam) (PVCL) and poly(N‐vinyl‐2‐pyrrolidone) (PVPON) (PVCL‐b‐PVPON) with well‐defined block lengths synthesized by the MADIX/reversible addition‐fragmentation chain transfer (RAFT) process. We show that the lower critical solution temperatures (LCST) of the block copolymers are controllable over the length of PVCL and PVPON segments. All of the diblock copolymers dissolve molecularly in aqueous solutions when the temperature is below the LCST and form spherical micellar or vesicular morphologies when temperature is raised above the LCST. The size of the self‐assembled structures is controlled by the molar ratio of PVCL and PVPON segments. The synthesized homopolymers and diblock copolymers are demonstrated to be nontoxic at 0.1–1 mg mL?1 concentrations when incubated with HeLa and HEK293 cancer cells for various incubation times and have potential as nanovehicles for drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2725–2737  相似文献   

8.
Tetrakis bromomethyl benzene was used as a tetrafunctional initiator in the synthesis of four‐armed star polymers of methyl methacrylate via atom transfer radical polymerization (ATRP) with a CuBr/2,2 bipyridine catalytic system and benzene as a solvent. Relatively low polydispersities were achieved, and the experimental molecular weights were in agreement with the theoretical ones. A combination of 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated free‐radical polymerization and ATRP was used to synthesize various graft copolymers with polystyrene backbones and poly(t‐butyl methacrylate) grafts. In this case, the backbone was produced with a 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated stable free‐radical polymerization process from the copolymerization of styrene and p‐(chloromethyl) styrene. This polychloromethylated polymer was used as an ATRP multifunctional initiator for t‐butyl methacrylate polymerization, giving the desired graft copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 650–655, 2001  相似文献   

9.
Synthesis of poly(styrene‐block‐tetrahydrofuran) (PSt‐b‐PTHF) block copolymer on the surfaces of intercalated and exfoliated silicate (clay) layers by mechanistic transformation was described. First, the polystyrene/montmorillonite (PSt/MMT) nanocomposite was synthesized by in situ atom transfer radical polymerization (ATRP) from initiator moieties immobilized within the silicate galleries of the clay particles. Transmission electron microscopy (TEM) analysis showed the existence of both intercalated and exfoliated structures in the nanocomposite. Then, the PSt‐b‐PTHF/MMT nanocomposite was prepared by mechanistic transformation from ATRP to cationic ring opening polymerization (CROP). The TGA thermogram of the PSt‐b‐PTHF/MMT nanocomposite has two decomposition stages corresponding to PTHF and PSt segments. All nanocomposites exhibit enhanced thermal stabilities compared with the virgin polymer segments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2190–2197, 2009  相似文献   

10.
Poly(N‐vinylcaprolactam) (PVCL) and poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) are well known for their thermoresponsive behavior in aqueous solutions. Indeed, they display lower critical solution temperatures (LCST) in the physiological range, which makes them interesting for biomedical devices and use in drug delivery systems. Homopolymers of N‐vinylcaprolactam and di(ethylene glycol) methyl ether methacrylate as well as copolymers thereof were synthesized by solution and direct miniemulsion polymerizations. The cloud points of the copolymers in aqueous solution were investigated as a function of temperature, comonomer ratio, and in the presence of model pharmaceutical ingredients. By variation of the comonomer ratio, it was possible to control the cloud point temperature between 26 and 35 °C, which was found to be beneficial to attenuate the effect of the drugs that also altered the cloud points. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3308–3313  相似文献   

11.
The synthesis of ABA‐type block copolymers, involving liquid‐crystalline 6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate (LC6) and styrene (St) monomer with copper‐based atom transfer radical polymerization (ATRP) and photoinduced radical polymerization (PIRP), was studied. First, photoactive α‐methylol benzoin methyl ether was esterified with 2‐bromopropionyl bromide, and it was subsequently used for ATRP of LC6 in diphenylether in conjunction with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst. The obtained photoactive functional liquid‐crystalline polymer, poly[6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate] (PLC6), was used as an initiator in PIRP of St. Similarly, photoactive polystyrenes were also synthesized and employed for the block copolymerization of LC6 in the second stage. The spectral, thermal, and optical measurements confirmed a full combination of ATRP and PIRP, which resulted in the formation of ABA‐type block copolymers with very narrow polydispersities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1892–1903, 2003  相似文献   

12.
Thermoresponsive poly(N‐vinylcaprolactam) nanocomposite hydrogels containing graphene were successfully prepared by frontal polymerization. High concentration of graphene (5.0 mg/mL) was obtained by direct graphite sonication in the self‐same liquid monomer, thus avoiding any chemical manipulation and obtaining “real” graphene as nanofiller instead of one of its more or less oxidized derivative, which is what generally reported in published reports. Furthermore, the corresponding nanocomposites were obtained without using any solvent to be eventually removed. The materials were fully characterized by RAMAN, SEM, and TEM, and their swelling behavior and rheological properties were investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A series of A3‐type star poly(methylmethacrylate)/clay nanocomposites is prepared by in situ atom transfer radical polymerization (ATRP) initiated from organomodified montmorillonite containing quaternary trifunctional ATRP initiator. The first order kinetic plot shows a linear behavior, indicating the controlled character of the polymerization. The resulting nanocomposites are characterized by spectroscopic (XRD), thermal (DSC and TGA), and microscopic (TEM) analyses. The exfoliated nanocomposite has been obtained when polymerization was conducted with 1% of organic clay loading. Thermal analyses show that all nanocomposites have higher glass transition values and thermal stabilities compared to neat polymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5257–5262  相似文献   

14.
We developed a novel fluorescence labeling technique for quantification of surface densities of atom transfer radical polymerization (ATRP) initiators on polymer particles. The cationic P(St‐CPEM‐C4DMAEMA) and anionic P(St‐CPEM) polymer latex particles carrying ATRP‐initiating chlorine groups were prepared by emulsifier‐free emulsion polymerization of styrene (St), 2‐(2‐chloropropionyloxy)ethyl methacrylate (CPEM), and N‐n‐butyl‐N,N‐dimethyl‐N‐(2‐methacryloyloxy)ethylammonium bromide (C4DMAEMA). ATRP initiators on the surface of polymer particles were converted into azide groups by sodium azide, followed by fluorescent labeling with 5‐(N,N‐dimethylamino)‐N′‐(prop‐2‐yn‐1‐yl)naphthalene‐1‐sulfonamide (Dansyl‐alkyne) by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). The reaction time required for both azidation of ATRP‐initiating groups and successive fluorescence labeling of azide groups with Dansyl‐alkyne by CuAAC were investigated in detail by FTIR and fluorescence spectral measurement, respectively. The ATRP initiator densities on the cationic P(St‐CPEM‐C4DMAEMA) and anionic P(St‐CPEM) particle surfaces were estimated to be 0.21 and 0.15 molecules nm?2, respectively, which gave close agreement with values previously determined by a conductometric titration method. The fluorescence labeling through click chemistry proposed herein is a versatile technique to quantify the surface ATRP initiator density both on anionic and cationic polymer particles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4042–4051  相似文献   

15.
Frontal polymerization (FP) is applied for the synthesis of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers. The dependence of frontal velocity and temperature on the initiator and cross‐linker are discussed. The synthesized copolymers have been characterized by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The thermo‐pH dual‐stimuli responsive behavior of the hydrogel is determined by swelling measurement at different temperatures and pH values. Besides, the hydrogels show intrinsic self‐healing behavior and their healing efficiency is determined by the mechanical tests. Interestingly, we integrate FP with microfluidic technology, which may realize the execution of FP under continuous condition. Such simple microfluidics‐FP integrated approach has both methodological and practical value for the synthesis of functional materials. This paper mainly presents the synthesis and characterization of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers by using thermal frontal polymerization (TFP). Hydrogels were found to be self‐healing with good mechanical performance and show dual thermo‐pH responsive behavior. Low‐cost, energy‐saving and efficient method of thermal frontal polymerization process was integrated with microfluidics technology to prepare supraball hydrogel. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1412–1423  相似文献   

16.
This work describes the polymerization of the free secondary amine bearing monomer 2,2,6,6‐tetramethylpiperidin‐4‐yl methacrylate (TMPMA) by means of different controlled radical polymerization techniques (ATRP, RAFT, NMP). In particular, reversible addition‐fragmentation chain transfer (RAFT) polymerization enabled a good control at high conversions and a polydispersity index below 1.3, thereby enabling the preparation of well‐defined polymers. Remarkably, the polymerization of the secondary amine bearing methacrylate monomer was not hindered by the presence of the free amine that commonly induces degradation of the RAFT reagent. Subsequent oxidation of the polymer yielded the polyradical poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl methacrylate), which represents a valuable material used in catalysis as well as for modern batteries. The obtained polymers having a molar mass (Mn) of 10,000–20,000 g/mol were used to fabricate well‐defined, radical‐bearing polymer films by inkjet‐ printing. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
The synthesis of polypeptide‐containing block copolymers combining N‐carboxyanhydride (NCA) ring‐opening polymerization and atom transfer radical polymerization (ATRP) was investigated. An amide initiator comprising an amine function for the NCA polymerization and an activated bromide for ATRP was used. Well‐defined polypeptide macroinitiators were obtained from γ‐benzyl‐L ‐glutamate NCA, O‐benzyl‐serine NCA, and N‐benzyloxy‐L ‐lysine. Subsequent ATRP macroinitiation from the polypeptides resulted in higher than expected molecular weights. Analysis of the reaction products and model reactions confirmed that this is due to the high frequency of termination reactions by disproportionation in the initial phase of the ATRP, which is inherent in the amide initiator structure. In some cases selective precipitation could be applied to remove unreacted macroinitiator to yield well‐defined block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

18.
Controlled and very rapid ambient temperature polymerization of tert‐butyl acrylate (tBA) via atom transfer radical polymerization (ATRP) and single electron transfer living radical polymerization (SET‐LRP) conditions is reported. Two initiators, one that would generate a secondary radical and another that would generate a primary radical, upon activation, are used. A very active catalyst CuBr/Me6TREN was found to initiate rapid polymerization whether it was the primary or the secondary initiator. The polymerization was well controlled and very rapid. The initiator that produces secondary initiating site is found to result in more rapid polymerization than the one that produces primary initiating site. To explore the possibility of rapid ambient temperature polymerization through the SET‐LRP mechanism, the polymerization was also carried out in the presence of DMSO. It was found that the polymerization was much faster compared to the bulk ATRP, without loss of control. Styrene was block copolymerized from PtBA macroinitiators and vice versa. In both the cases, block copolymers with controlled molecular weights were obtained. The tBA block of the polymer was selectively hydrolyzed to get amphiphilic block copolymers. This amphiphilic block copolymer was found to be useful in preparing stable cadmium sulfide (CdS) nanoparticulate dispersion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
In this work, zero‐valent iron (Fe(0)) (powder or wire) and elemental bromine (Br2) were used as the catalysts for atom transfer radical polymerization (ATRP) of styrene (St) without any additional initiator at 110 °C. The polymerizations happened with controlled evidence at appropriate molar ratio of Fe(0) to Br2: a remarkable increase of molecular weights with St conversions, the narrow molecular weight distributions and living polymer chains end‐capped by Br. More Br2 or less Fe(0) led to a slow polymerization rate but an improved control over molecular weights. After examining the polymer chain ends by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, it was concluded that the polymerization was initiated by thermal self‐initiation, and regulated by the in situ generated FeIIIBr3. The results suggested that the Fe(0)/Br2 catalyzing polymerization was a classical ATRP process with easier operation and more economical components. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
A series of poly(N‐(ω′‐alkylcarbazoly) methacrylates) tris(bipyridine) Ru‐centered bifunctional polymers with good filming, thermal, and solubility properties were synthesized and characterized. Atom transfer radical polymerization (ATRP) of N‐(ω′‐alkylcarbazoly) methacrylates in solution was used, where Ru complexes with one and three initiating sites acted as metalloinitiators with NiBr2(PPh3)2 as a catalyst. ATRP reaction conditions with respect to polymer molecular weights and polydispersity indices (PDI) of the target bifunctional polymers were examined. Electronic absorption and emission spectra of the resultant functional polymers provided evidence of chromophore presence within a single polymeric chain. The thermal properties of all polymers were also investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and these analyses have indicated that these polymers possess higher thermal stabilities than poly(methyl methacrylate) (PMMA) obtained via free radical polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6057–6072, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号