首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A reactive extrusion process was developed to fabricate polymer/graphene nanocomposites with good dispersion of graphene sheets in the polymer matrix. The functionalized graphene nanosheet (f‐GNS) activated by diphenylmethane diisocyanate was incorporated in thermoplastic polyester elastomer (TPEE) by reactive extrusion process to produce the TPEE/f‐GNS masterbatch. And then, the TPEE/f‐GNS nanocomposites in different ratios were prepared by masterbatch‐based melt blending. The structure and morphology of functionalized graphene were characterized by Fourier transform infrared, X‐ray photoelectron spectroscopy, X‐ray diffraction and transmission electron microscopy (TEM). The incorporation of f‐GNS significantly improved the mechanical, thermal and crystallization properties of TPEE. With the incorporation of only 0.1 wt% f‐GNS, the tensile strength and elongation at break of nanocomposites were increased by 47.6% and 30.8%, respectively, compared with those of pristine TPEE. Moreover, the degradation temperature for 10 wt% mass loss, storage modulus at ?70°C and crystallization peak temperature (Tcp) of TPEE nanocomposites were consistently improved by 17°C, 7.5% and 36°C. The remarkable reinforcements in mechanical and thermal properties were attributed to the homogeneous dispersion and strong interfacial adhesion of f‐GNS in the TPEE matrix. The functionalization of graphene was beneficial to the improvement of mechanical properties because of the relatively well dispersion of graphene sheets in TPEE matrix, as suggested in the TEM images. This simple and effective approach consisting of chemical functionalization of graphene, reactive extrusion and masterbatch‐based melt blending process is believed to offer possibilities for broadening the graphene applications in the field of polymer processing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Blends of ethylene‐glycidyl methacrylate copolymer (PE‐GMA) and polyamide 6 (PA6) were prepared in a corotating twin screw extruder. Two processing temperatures were used in order to disperse PA6 in two forms: at high temperature in the molten state in molted PE‐GMA Matrix (emulsion type mixture) and at lower temperature as fillers in molted PEGMA matrix (suspension type mixture). Processed blends were analyzed by scanning electron microscopy and dynamic mechanical experiments to probe the reactivity in the extruder and the compatibilization phenomena. The dependence of the morphology and the rheological properties of PE‐GMA/PA6 blends on blend composition and screw rotational speed was also investigated and is discussed in the paper. The results show that dispersion of the two polymers in the molten state leads to a higher level of interfacial reaction. They also show that whatever the screw rotational speed and the temperature of extrusion are, the rate of interfacial reaction in PE‐GMA/PA6 blends is higher for 50/50 PE‐GMA/PA blends than for 70/30 PE‐GMA/PA blends. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
High‐performance thermoplastic vulcanizates (TPVs) are the new generation of TPVs that provide superior heat and oil aging behavior. TPVs based on hydrogenated acrylonitrile butadiene rubber and polyamide 12 (PA12) have been first developed by the dynamic vulcanization process, in which selective cross‐linking of the elastomer phase during melt mixing with the thermoplastic phase (PA12) was carried out simultaneously. In this present investigation, hydrogenated acrylonitrile butadiene rubber (HNBR)/PA12 and partially hydrogenated carboxylated acrylonitrile butadiene rubber (XHNBR)/PA12 with blend ratio of 50:50, 60:40, and 70:30 wt% were prepared at 185°C at a rotor speed of 80 rpm for 5 min. Di‐(2‐tert‐butyl peroxy isopropyl) benzene was chosen as the suitable cross‐linking peroxide to pursue the dynamic vulcanization. TPV based on 50:50 HNBR/PA12 and XHNBR/PA12 show better physico‐mechanical properties, rheological behavior, thermal stability, dynamic mechanical analysis, and creep behavior among all the TPVs. Morphology study reveals that dispersed phase morphology has been formed with an average dimension of the rubber particles in the range of 0.8–1.5 µm. For aging test, TPVs were exposed to air and ASTM oil 3, respectively. Air aging tests were carried out in hot air oven for 72 hr at 125°C, while the oil aging tests were carried out after immersion of the samples into the oils in an aging oven. After aging, there is only slight deterioration in the physico‐mechanical properties of the TPVs. In case of 50:50 blends of HNBR/PA12 and XHNBR/PA12, the retention of the properties upon after aging was found excellent. These TPVs are designed to find potential application in automotive sector especially for under‐hood‐application, where high‐temperature resistance as well as high oil resistance is of prime importance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The compatibility behavior of polyetherether ketone (PEEK) with poly(ether sulfone) (PES) has been reexamined using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and extrudate swell measurements. The blends were prepared by both melt‐blending and solution‐blending techniques. The phase behavior of blends is strongly affected by the blending technique used. Blends prepared by solution‐blending are compatible in the entire composition range on the basis of the single composition‐dependent glass transitions and exhibit lower critical solution temperature (LCST) behavior. LCST was near 340 °C around which the crystalline melting point of PEEK exists. Near LCST melting‐induced movement of molecular chains disturbs the initial homogeneous state of the solution blends and leads to a phase‐separated state that is thermodynamically more stable in the absence of strong specific interactions between the homopolymers. Contrary to the solution‐blended samples, melt‐blended samples were in the phase‐separated state even at a lower processing temperature of 300 °C. Two glass transitions corresponding to a PEEK‐rich and a PES‐rich phase were found for all compositions. From the measured glass transition of phase‐separated blends, weight fractions of PES and PEEK dissolved in each phase were determined using the Fox equation. Compatibility is greater in the PEEK‐rich compositions than in the PES‐rich compositions. PEEK dissolves more in PES‐rich phases than does PES in the PEEK‐rich phase. Variation of the specific heat increment (ΔCp) at the glass transition with composition also supports these inferences. Solution‐blended samples, quenched from 380 °C, also indicated similar behavior but were slightly more compatible. The aforementioned results are consistent with those inferred from SEM studies and extrudate swell measurements that show a greater compatibility in PEEK‐rich compositions than in PES‐rich compositions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1407–1424, 2002  相似文献   

5.
The effects of processing time and concentration of cobalt acetylacetonate III complex in poly(ethylene terephthalate)/polycarbonate reactive blending were investigated. The blend was prepared in an internal mixer at 270°C, 60 rpm, at different processing times (5–20 min) and catalyst concentration (0.00625–0.075 mass%). The reaction product was evaluated by differential scanning calorimetry (DSC), thermogravimetry (TG) and wide angle X-rays scattering (WAXS). In general, the DSC curves showed two glass transition temperatures (T g’s) close to each homopolymer, independent of the processing time and complex’s concentration, suggesting the presence of two phases: one rich in PET and other one rich in PC. In all cases, melting temperature (T m), cold crystallization temperature (T cc) and crystallinity degree (X c) were progressively reduced with blending conditions. The TG curves presented two decays. The first one represented the PET rich phase and the other one was related to the PC phase. The WAXS diffractograms showed that the Bragg’s angle and interplanar spacing of PET remaining practically unchanged.  相似文献   

6.
PMMA containing 50 wt% of anthracene-labeled PMMA chains end-capped by a phthalic anhydride group (anth-PMMA-anh) has been melt blended at 180°C with PS containing 33 wt% of chains end-capped by an aliphatic primary amine (PS-NH2) and PS bearing 3.5 pendant amine groups (as an average) along the chains (PS-co-PSNH2), respectively. The reactive chains have been synthesized by atom transfer radical polymerization. Conversion of anth-PMMA-anh into PS-b-PMMA and PS-g-PMMA copolymers has been monitored by SEC with a UV detector. The interfacial reaction mainly occurs in the initial melting and softening stage (<1.0 min.), although at a rate which strongly depends on the number of reactive groups attached to PS chains, the higher conversion being observed for the PS-co-PSNH2 containing blends. The phase morphology depends on the architecture of the in-situ formed copolymer. Indeed, a coarser phase dispersion is observed in case of the graft copolymer compared to the diblock.  相似文献   

7.
The aim of the present study was to improve the compatibility in blends of natural rubber (NR) and polyamide 12 (PA12) by grafting NR with hydrophilic monomer, diacetone acrylamide (DAAM), via seeded emulsion polymerization. The increase in polarity of NR after grafting modification was confirmed by a considerable increase in the polar component of its surface energy. Blends of graft copolymers of NR and poly(diacetone acrylamide) prepared using 10 wt% of DAAM (NR‐g‐PDAAM10) and PA12 were prepared at a 60/40 blend ratio (wt%) using simple blend and dynamic vulcanization techniques. The mechanical and rheological properties of the resulting blends were subsequently investigated and compared with those of the corresponding blends based on unmodified NR. The results show that dynamic vulcanization led to a significant increase in both mechanical and rheological properties of the blends. It was also observed that the dynamically cured NR‐g‐PDAAM10/PA12 blend had smaller particle size of vulcanized rubber dispersed in the PA12 matrix than observed for the dynamically cured NR/PA12 blend. This is due to the compatibilizing effect of DAAM groups present in NR‐g‐PDAAM10 molecule, which decreases the interfacial tension between the two polymeric phases. Therefore, it can be stated that the interfacial adhesion between NR and PA12 was improved by the presence of DAAM groups in NR molecule. This was reflected in the higher tensile properties observed in the dynamically cured NR‐g‐PDAAM10/PA12 blend. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
There is growing interest in the incorporation of nanoparticles into engineering polymers to improve various functional properties. However, ultimate properties of nanocomposites are affected by a large number of factors including the microstructural distributions that are generated during processing. In this work, polyamide‐11 (PA‐11) (also known as nylon‐11) nanocomposites are generated with carbon nanostructures employing a solution crystallization technique at multiple polymer and nanoparticle concentrations, followed by drying, molding, uniaxial stretching and the analysis of the microstructural distributions and tensile properties of the nanocomposites. The morphology of crystals of PA‐11 encapsulating the nanoparticles changed from nano‐hybrid shish‐kebabs at low polymer concentration (0.02 wt % PA‐11 in solvent) to spherulites at high polymer concentration (10 wt % PA‐11 in solvent). The drawing down of nanocomposite films at draw ratios ranging from 2 to 5 at 100 °C resulted in a shift of the PA‐11 polymorph from the generally‐encountered α phase to the technologically interesting γ phase (which is the crystal phase attributed to the piezoelectric and pyroelectric properties of PA‐11). The drawing down also increased of the tensile modulus and yield stress of the nanocomposite films. In contrast, the α phase was conserved at a drawdown temperature of 150 °C, which was attributed to the resulting smaller normal force, i.e., the normal stress difference and the higher temperature allowing the partial relaxation of some of the macromolecules. These findings illustrate how PA‐11 can be structured in the presence of carbon nanotubes and nanofibers to achieve enhanced functionality, which could broaden the application areas and utility of this polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1311–1321, 2011  相似文献   

9.
Super-toughened poly(lactic acid) (PLA)/poly(ethylene-co-vinyl acetate) (EVA) blends were prepared via 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (AD) induced dynamic vulcanization and in situ interfacial compatibilization. The effects of AD on the morphology and properties of PLA/EVA blends were studied using a Brabender torque rheometer, gel content test, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) thermogravimetric analysis (TGA) and mechanical properties test. The torque and gel content demonstrated that EVA and PLA was successfully vulcanized in the presence of free radicals obtained by the decomposition of the 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (AD). Additionally, the gel content results indicated that, compared with PLA, EVA is more aggressive with free radicals. The SEM revealed that a relatively uniform phase morphology and good interfacial compatibilization were achieved in the dynamically vulcanized PLA/EVA/AD blends. The interfacial reaction and compatibilization between the component polymers resulted in the formation of super-toughened PLA/EVA blended materials.  相似文献   

10.
The effects of molecular characteristics and processing conditions on melt‐drawing behavior of ultrahigh molecular weight polyethylene (UHMW‐PE) are discussed, based on a combination of in situ X‐ray measurement and stress–strain behavior. The sample films of metallocene‐ and Ziegler‐catalyzed UHMW‐PEs with a similar viscosity average MW of ~107 were prepared by compression molding at 180 °C. Stress profiles recorded at 160 °C above the melting temperature of 135 °C exhibited a plateau stress region for both films. The relative change in the intensities of the amorphous scattering recorded on the equator and on the meridian indicated the orientation of amorphous chains along the draw axis with increasing strain. However, there was a substantial difference in the subsequent crystallization into the hexagonal phase, reflecting the molecular characteristics, that is, MW distribution of each sample film. Rapid crystallization into the hexagonal phase occurred at the beginning point of the plateau stress region in melt‐drawing for metallocene‐catalyzed UHMW‐PE film. In contrast, gradual crystallization into the hexagonal phase occurred at the middle point of the plateau stress region for the Ziegler‐catalyzed film, suggesting an ease of chain slippage during drawing. These results demonstrate that the difference in the MW distribution due to the polymerization catalyst system dominates the phase development mechanism during melt‐drawing. The effect of the processing conditions, that is, the including strain rate and drawing temperature, on the melt‐drawing behavior is also discussed. The obtained results indicate that the traditional temperature–strain rate relationship is effective for transient crystallization in to the hexagonal phase during melt‐drawing, as well as for typically oriented crystallization during ultradrawing in the solid state. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2455–2467, 2006  相似文献   

11.
Thermal analysis and SEM were employed to gain insights in the different stages of morphology development and the thermal properties of polymer‐monolithic stationary phases. The studied system was a thermally initiated free‐radical copolymerization reaction at 70°C of styrene and divinylbenzene in the presence of tetrahydrofuran and 1‐decanol. The key events in the early stages of morphology development are initiation, chain growth, branching, and cyclization, leading to microgel particles. Interparticle reactions through pendant vinyl groups lead to the formation of microgel clusters. The rapid increase in molecular weight and cross‐link density of the microgel clusters causes a reaction‐induced phase separation, and the formation of a macroscopic network of interconnected globules was observed (macrogelation) at around 45 min. After 3 h or 65% conversion, a space‐filling macroporous monolithic network was observed. Afterwards, mainly growth of existing globules takes place, reducing the macropore size. The porogen ratio affects the timing of the reaction‐induced phase separation, strongly influencing the morphology of the polymer material. The use of a mixture of divinylbenzene isomers yielded a monolithic material that is less cross‐linked at the surface compared to the central part of the polymer backbone due to copolymerization‐composition drift. The less cross‐linked outer layer starts devitrifying at 100°C.  相似文献   

12.
In the current paper, a comparative study on the direct solid state polycondensation (DSSP) reaction of different terephthalate based semi‐aromatic salts (XT salts, X = 4–18) in the TGA micro‐reactor is reported. High purity XT salts were prepared in solution and were used as starting materials for DSSP. The reaction temperature (TDSSP) for each salt was suitably selected as 20 °C–30 °C below the melting point Tm of the respective salt. The PAXT products were characterized by TGA/DSC, liquid 1H‐NMR, and SEM. In the DSSP of XT salts, some diamine is always lost to the gas phase and as a consequence, the attainable molecular weight of the polymer formed gets limited by the unbalance of acid and amine end‐groups. The TGA curves show that as the diamine length increases and its volatility decreases, higher molecular weights are obtained. SEM pictures of the products reveal true solid character during the polymerization reaction up to and including PA10T, whereas PA5T, PA12T, and PA18T reveal stickiness and agglomeration during reaction. A possible mechanism explaining such behaviour is also provided. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2493–2506  相似文献   

13.
Summary: The effect of chain architecture of in situ formed copolymers on the interfacial morphology of reactive polymer blends was investigated. We found that the chain architectures of copolymers at the interface significantly affected the reaction and interface roughness. Although the amount of in situ formed Y‐shaped graft copolymers was smaller than that for diblock copolymers, the interface area generated by the former was larger than that generated by the latter.

Cross‐sectional TEM images for the mid‐sample reacted at 180 °C for different reaction times.  相似文献   


14.
This paper reports on the interfacial behaviour of block and graft copolymers used as compatibilizers in immiscible polymer blends. A limited residence time of the copolymer at the interface has been shown in both reactive blending and blend compatibilization by preformed copolymers. Polystyrene (PS)/polyamide6 (PA6), polyphenylene oxide (PPO)/PA6 and polymethylmethacrylate (PMMA)/PA6 blends have been reactively compatibilized by a styrene-maleic anhydride copolymer SMA. The extent of miscibility of SMA with PS, PPO and PMMA is a key criterion for the stability of the graft copolymer at the interface. For the first 10 to 15 minutes of mixing, the in situ formed copolymer is able to decrease the particle size of the dispersed phase and to prevent it from coalescencing. However, upon increasing mixing time, the copolymer leaves the interface which results in phase coalescence. In PS/LDPE blends compatibilized by preformed PS/hydrogenated polybutadiene (hPB) block copolymers, a tapered diblock stabilizes efficiently a co-continuous two-phase morphology, in contrast to a triblock copolymer that was unable to prevent phase coarsening during annealing at 180°C for 150 minutes.  相似文献   

15.
Microspheres were prepared using N‐methylolurea‐dodecylamine conjugate (MU‐DOA), an emulsifiable and self‐condensaible oil. MU was prepared by reacting urea and formaldehyde at 70°C in alkali conditions and then conjugating it to DOA by a condensation reaction. The MU‐DOA conjugate was emulsified in distilled water without an emulsifier, and then the oil droplets were hardened to obtain microspheres by a self‐condensation reaction among methylols of the conjugate. The reactions of each step, e.g., the preparation of MU, the conjugation of MU and DOA, and the self‐condensation of emulsified oil, were confirmed by Fourier transform infrared (FTIR) spectra. On scanning electron microscopy (SEM), the microspheres formed by the self‐condensation of the emulsified MU‐DOA were shown as spherical and less than 30 µm in diameter. The phase transition temperatures of DOA, MU‐DOA, and MU‐DOA microspheres were 30.3°C, 21.1°C, and 20.1°C, respectively. The lower transition temperature of MU‐DOA is probably due to the bulky MU, which could reduce the intermolecular interaction of MU‐DOA. Zeta potentials of the microspheres decreased from positive to negative value as pH increased from 3.5 to 10.5. The deprotonation of the amines of MU‐DOA would be responsible for that result.  相似文献   

16.
The chain‐extension behavior of 2,2′‐bis(2‐oxazoline) (BOZ) was studied to evaluate the coupling effect on polyamide‐6 (PA6) in a Haake Rheocord mixer and an extruder. The relative torque of PA6 dramatically increased within 1–2 min, and the results were similar whether the added amount of BOZ in PA6 was the theoretical amount or twice as much at 240 °C; however, after 5 min, the coupling results showed an optimal dosage of the chain extender, a lack of which caused a deficiency of chain extension and an excess of which led to a greater blocking reaction. The final torque was 2.16 times as much as that of a control sample when the reaction temperature was 240 °C, and the added amount of BOZ in PA6 was 1.156%; at the same time, the initial carboxyl content of the chain‐extended products decreased to 40% for PA6, and this corresponded to the intrinsic viscosity of PA6 increasing to 1.636 dL/g, whereas that of the control sample was 1.384 dL/g. Furthermore, the effects of BOZ on the thermal and mechanical properties of chain‐extended PA6 were investigated. The degree of crystallinity decreased as the chain extender was added to PA6. The Izod impact strength, tensile strength, and elongation at break of the resultant products dramatically improved under wet conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1976–1982, 2007  相似文献   

17.
The thermal stability and molecular order in monolayers of two organic semiconductors, PBI‐PA and PBI‐alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI‐PA, are reported. In situ X‐ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI‐PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI‐alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate.  相似文献   

18.
Structural characterization of vulcanized natural rubber was performed by high‐resolution latex‐state 13C NMR spectroscopy. The vulcanized natural rubber latex was prepared by vulcanization of high ammonia natural rubber latex with sulfur and sodium di‐n‐butyldithiocarbamate as vulcanizing agents. High resolution was attained for latex‐state 13C NMR spectroscopy even after vulcanization of the rubber latex, as is evident from no background in spectrum and narrow half width of signals, which were independent of vulcanization time. Small signals at 44 and 58 ppm in the carbon region were assigned by measurements of both distortionless enhancement by polarization transfer (DEPT) and attached proton test (APT) to secondary, tertiary, and quaternary carbons of crosslinking points. The assignment was proved by high‐resolution solution‐state NMR spectroscopy of vulcanized liquid cis‐1,4‐polyisoprene as a model, in which DEPT, APT, 2‐dimensional 1H‐13C correlation (HETCOR), and 2‐dimensional heteronuclear multiple bond correlation (HMBC) measurements were applied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1003–1009, 2007  相似文献   

19.
The crystallization of submicrometer PA6 droplets dispersed in an ethylene‐1‐octene copolymer matrix, using PE‐g‐MA as a compatibilizer agent, is investigated. This system shows a nonconventional mechanical behavior at high temperatures. Up to ~100 °C above the final melting temperature of the ethylene‐1‐octene copolymer matrix, the system shows good thermal and mechanical properties including dimensional stability. Because of the dispersed phase morphology of the system, so‐called fractionated/homogeneous crystallization takes place leading to an extra supercooling of PA6: ~50 °C compared to the bulk PA6 crystallization temperature. Thus—though this is most probably just of interest for small‐scale research—the system can be processed at lowered temperatures while still providing exceptional high‐temperature properties. While the matrix is in the melt state when crystallization of the dispersed PA6 phase occurs, the possibility of matrix induced crystallization is absent, contrary to almost all of the ‘dispersed droplets in a matrix’ systems reported so far. The kinetics of this phenomenon is investigated in detail by DSC: the existence of fractionated/homogeneous crystallization is shown to be related to the lack of active nuclei in the dispersed droplets by means of self‐seeding experiments. The occurrence of extensive cold crystallization of PA6 in the confined environment is studied as is the crystallization kinetics, including the characterization of its time dependences showing its sporadic nature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 815–825, 2006  相似文献   

20.
杨曙光 《高分子科学》2016,34(4):399-406
Hydrothermal processing of polyamide 6(PA6) with the presence of lanthanum chloride(La Cl3) was studied in the temperature region from 160 °C to 250 °C. PA6 will be dissolved in the superheated water when temperature is above 160 °C. And as PA6 is dissolved, hydrolysis will happen, which makes PA6 chains degrade. By adding La Cl3 in the hydrothermal environment, the PA6 hydrolysis will intensify, especially when the hydrothermal temperature is higher than 200 °C. When the hydrothermal system cools down, the hydrolyzed PA6 segments will crystallize from the solution or remain dissolved in the solution depending on molecular weight. In addition, the hydrolyzed compound of La Cl3 would affect the crystallization of PA6 segments with proper size, and ? phase would be presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号