首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A locally finite graph G with no isolated vertices is vertex-transitive if and only if all its vertex-deleted subgraphs G-v are isomorphic.  相似文献   

2.
An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v, u, x, y) of vertices such that both (v, u, x) and (u, x, y) are paths of length two. The 3-arc graph of a graph G is defined to have vertices the arcs of G such that two arcs uv, xy are adjacent if and only if (v, u, x, y) is a 3-arc of G. We prove that any connected 3-arc graph is hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are hamiltonian. As a corollary we obtain that any vertex-transitive graph which is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three must be hamiltonian. This confirms the conjecture, for this family of vertex-transitive graphs, that all vertex-transitive graphs with finitely many exceptions are hamiltonian. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.  相似文献   

3.
A set S of vertices in a graph G is a total dominating set of G if every vertex is adjacent to a vertex in S. The total domination number γt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdγt(G) of a graph G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the total domination number. Haynes et al. (J. Combin. Math. Combin. Comput. 44 (2003) 115) showed that for any tree T of order at least 3, 1?sdγt(T)?3. In this paper, we give a constructive characterization of trees whose total domination subdivision number is 3.  相似文献   

4.
We characterize the eigenvalues and energy of the line graph L(G) whenever G is (i) a generalized Bethe tree, (ii) a Bethe tree, (iii) a tree defined by generalized Bethe trees attached to a path, (iv) a tree defined by generalized Bethe trees having a common root, (v) a graph defined by copies of a generalized Bethe tree attached to a cycle and (vi) a graph defined by copies of a star attached to a cycle; in this case, explicit formulas for the eigenvalues and energy of L(G) are derived.  相似文献   

5.
Let N(Z) denote the set of all positive integers (integers). The sum graph G +(S) of a finite subset S?N(Z) is the graph (S,E) with uvE if and only if u+vS. A graph G is said to be an (integral) sum graph if it is isomorphic to the sum graph of some S?N(Z). A sum labelling S is called an exclusive sum labelling if u+vS?V(G) for any edge uvE(G). We say that G is labeled exclusively. The least number r of isolated vertices such that GrK 1 is an exclusive sum graph is called the exclusive sum number ε(G) of graph G. In this paper, we discuss the exclusive sum number of disjoint union of two graphs and the exclusive sum number of some graph classes.  相似文献   

6.
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. Two vertices of G are said to be dotted (identified) if they are combined to form one vertex whose open neighborhood is the union of their neighborhoods minus themselves. We note that dotting any pair of vertices cannot increase the total domination number. Further we show it can decrease the total domination number by at most 2. A graph is total domination dot-stable if dotting any pair of adjacent vertices leaves the total domination number unchanged. We characterize the total domination dot-stable graphs and give a sharp upper bound on their total domination number. We also characterize the graphs attaining this bound.  相似文献   

7.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. The graph G is total domination edge critical if for every edge e in the complement of G, γt(G+e)<γt(G). We call such graphs γtEC. Properties of γtEC graphs are established.  相似文献   

8.
A set S of vertices in a graph G is a total dominating set (TDS) of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a TDS of G is the total domination number of G, denoted by γt(G). A graph is claw-free if it does not contain K1,3 as an induced subgraph. It is known [M.A. Henning, Graphs with large total domination number, J. Graph Theory 35(1) (2000) 21-45] that if G is a connected graph of order n with minimum degree at least two and G∉{C3,C5, C6, C10}, then γt(G)?4n/7. In this paper, we show that this upper bound can be improved if G is restricted to be a claw-free graph. We show that every connected claw-free graph G of order n and minimum degree at least two satisfies γt(G)?(n+2)/2 and we characterize those graphs for which γt(G)=⌊(n+2)/2⌋.  相似文献   

9.
Let G=(V,E) be a graph. A set SV is a restrained dominating set (RDS) if every vertex not in S is adjacent to a vertex in S and to a vertex in V?S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of an RDS of G. A set SV is a total dominating set (TDS) if every vertex in V is adjacent to a vertex in S. The total domination number of a graph G without isolated vertices, denoted by γt(G), is the minimum cardinality of a TDS of G.Let δ and Δ denote the minimum and maximum degrees, respectively, in G. If G is a graph of order n with δ?2, then it is shown that γr(G)?n-Δ, and we characterize the connected graphs with δ?2 achieving this bound that have no 3-cycle as well as those connected graphs with δ?2 that have neither a 3-cycle nor a 5-cycle. Cockayne et al. [Total domination in graphs, Networks 10 (1980) 211-219] showed that if G is a connected graph of order n?3 and Δ?n-2, then γt(G)?n-Δ. We further characterize the connected graphs G of order n?3 with Δ?n-2 that have no 3-cycle and achieve γt(G)=n-Δ.  相似文献   

10.
Let G=(V,E) be a graph. A set SV is a restrained dominating set if every vertex in VS is adjacent to a vertex in S and to a vertex in VS. The restrained domination number of G, denoted γr(G), is the smallest cardinality of a restrained dominating set of G. We will show that if G is a connected graph of order n and minimum degree δ and not isomorphic to one of nine exceptional graphs, then .  相似文献   

11.
Let H be a multigraph and G a graph containing a subgraph isomorphic to a subdivision of H, with SV(G) (the ground set) the image of V(H) under the isomorphism. We consider connectivity and minimum degree or degree sum conditions sufficient to imply there is a spanning subgraph of G isomorphic to a subdivision of H on the same ground set S. These results generalize a number of theorems in the literature.  相似文献   

12.
A graph G is said to be highly constricted if there exists a nonempty subset S of vertices such that (i) G ? S has more than |S| components, (ii) S induces the complete graph, and (iii) for every uS and v ? S, we have dG(u) > dG(v), where dG(u) denotes the degree of u in G. In this paper it is shown that a non-hamiltonian self-complementary graph G of order p is highly constricted, unless p = 4N and G is a particular graph G1(4N). It is also proved that if G is a self-complementary graph of order p(≥8) and π its degree sequence, then G is pancyclic if π has a realization with a hamiltonian cycle, and G has a 2-factor if π has a realization with a 2-factor, unless p = 4N and G = G1(4N).  相似文献   

13.
A set S of vertices in a graph G is a total dominating set, denoted by TDS, of G if every vertex of G is adjacent to some vertex in S (other than itself). The minimum cardinality of a TDS of G is the total domination number of G, denoted by γt(G). If G does not contain K1,3 as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek, P.C.B. Lam, S. Seager, B. Wei, R. Yuster, Some remarks on domination, J. Graph Theory 46 (2004) 207-210.] that if G is a graph of order n with minimum degree at least three, then γt(G)?n/2. Two infinite families of connected cubic graphs with total domination number one-half their orders are constructed in [O. Favaron, M.A. Henning, C.M. Mynhardt, J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34(1) (2000) 9-19.] which shows that this bound of n/2 is sharp. However, every graph in these two families, except for K4 and a cubic graph of order eight, contains a claw. It is therefore a natural question to ask whether this upper bound of n/2 can be improved if we restrict G to be a connected cubic claw-free graph of order at least 10. In this paper, we answer this question in the affirmative. We prove that if G is a connected claw-free cubic graph of order n?10, then γt(G)?5n/11.  相似文献   

14.
G.C. Lau  Y.H. Peng 《Discrete Mathematics》2009,309(12):4089-4094
Let P(G,λ) be the chromatic polynomial of a graph G. A graph G is chromatically unique if for any graph H, P(H,λ)=P(G,λ) implies H is isomorphic to G. For integers k≥0, t≥2, denote by K((t−1)×p,p+k) the complete t-partite graph that has t−1 partite sets of size p and one partite set of size p+k. Let K(s,t,p,k) be the set of graphs obtained from K((t−1)×p,p+k) by adding a set S of s edges to the partite set of size p+k such that 〈S〉 is bipartite. If s=1, denote the only graph in K(s,t,p,k) by K+((t−1)×p,p+k). In this paper, we shall prove that for k=0,1 and p+ks+2, each graph GK(s,t,p,k) is chromatically unique if and only if 〈S〉 is a chromatically unique graph that has no cut-vertex. As a direct consequence, the graph K+((t−1)×p,p+k) is chromatically unique for k=0,1 and p+k≥3.  相似文献   

15.
A set S of vertices of a graph G is a total dominating set, if every vertex of V(G) is adjacent to some vertex in S. The total domination number of G, denoted by γt(G), is the minimum cardinality of a total dominating set of G. We prove that, if G is a graph of order n with minimum degree at least 3, then γt(G) ≤ 7n/13. © 2000 John Wiley & Sons, Inc. J Graph Theory 34:9–19, 2000  相似文献   

16.
 A homogeneous factorisation of a complete graph K n is a partition of the edge set that is invariant under a subgroup G of S n such that G is transitive on the parts of the partition and induces a vertex-transitive automorphism group on the graph corresponding to each part. A product construction is given for such factorisations. Received: October, 2001 Final version received: May 17, 2002  相似文献   

17.
The complete graph Kn, is said to have a G-decomposition if it is the union of edge disjoint subgraphs each isomorphic to G. The set of values of n for which Kn has a G-decomposition is determined if G has four vertices or less.  相似文献   

18.
A dominating set of a graph G = (N,E) is a subset S of nodes such that every node is either in S or adjacent to a node which is in S. The domatic number of G is the size of a maximum cardinality partition of N into dominating sets. The problems of finding a minimum cardinality dominating set and the domatic number are both NP-complete even for special classes of graphs. In the present paper we give an O(nE∣) time algorithm that finds a minimum cardinality dominating set when G is a circular arc graph (intersection graph of arcs on a circle). The domatic number problem is solved in O(n2 log n) time when G is a proper circular arc graph, and it is shown NP-complete for general circular arc graphs.  相似文献   

19.
A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The matching number is the maximum cardinality of a matching of G, while the total domination number of G is the minimum cardinality of a total dominating set of G. In this paper, we investigate the relationships between the matching and total domination number of a graph. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number, and we show that every k-regular graph with k?3 has total domination number at most its matching number. In general, we show that no minimum degree is sufficient to guarantee that the matching number and total domination number are comparable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号