首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a new numerical algorithm is provided to solve nonlinear multi‐point boundary value problems in a very favorable reproducing kernel space, which satisfies all complex boundary conditions. Its reproducing kernel function is discussed in detail. The theorem proves that the approximate solution and its first‐ and second‐order derivatives all converge uniformly. The numerical experiments show that the algorithm is quite accurate and efficient for solving nonlinear multi‐point boundary value problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we construct a new fractional weighted reproducing kernel space, which is the minimum space containing the exact solution. The closed form of the reproducing kernel is obtained. Using this fractional reproducing kernel space, a class of fractional integro‐differential equations with a weakly singular kernel is solved. The error estimation is given. The final numerical experiments demonstrate the correctness of the theory and the effectiveness of the method.  相似文献   

3.
基于再生核空间法提出了一个高效的数值算法来解决三阶微分方程的边值问题.利用再生性以及正交基的构造,得到了模型精确解的级数表示形式,并通过截断级数获得了其近似解.通过数值算例说明了此方法的有效性.  相似文献   

4.
This article is concerned with a method for solving nonlocal initial‐boundary value problems for parabolic and hyperbolic integro‐differential equations in reproducing kernel Hilbert space. Convergence of the proposed method is studied under some hypotheses which provide the theoretical basis of the proposed method and some error estimates for the numerical approximation in reproducing kernel Hilbert space are presented. Finally, two numerical examples are considered to illustrate the computation efficiency and accuracy of the proposed method. © 2016 The Authors Numerical Methods for Partial Differential Equations Published by Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 174–198, 2017  相似文献   

5.
In this paper, the weakly singular Volterra integral equations with an infinite set of solutions are investigated. Among the set of solutions only one particular solution is smooth and all others are singular at the origin. The numerical solutions of this class of equations have been a difficult topic to analyze and have received much previous investigation. The aim of this paper is to present a numerical technique for giving the approximate solution to the only smooth solution based on reproducing kernel theory. Applying weighted integral, we provide a new definition for reproducing kernel space and obtain reproducing kernel function. Using the good properties of reproducing kernel function, the only smooth solution is exactly expressed in the form of series. The n-term approximate solution is obtained by truncating the series. Meanwhile, we prove that the derivative of approximation converges to the derivative of exact solution uniformly. The final numerical examples compared with other methods show that the method is efficient.  相似文献   

6.
This paper investigates the numerical solutions of singular second order three-point boundary value problems using reproducing kernel Hilbert space method. It is a relatively new analytical technique. The solution obtained by using the method takes the form of a convergent series with easily computable components. However, the reproducing kernel Hilbert space method cannot be used directly to solve a singular second order three-point boundary value problem, so we convert it into an equivalent integro-differential equation, which can be solved using reproducing kernel Hilbert space method. Four numerical examples are given to demonstrate the efficiency of the present method. The numerical results demonstrate that the method is quite accurate and efficient for singular second order three-point boundary value problems.  相似文献   

7.
The purpose of the present paper is to propose an efficient numerical method for solving the differential equations of Bratu‐type with fractional order in reproducing kernel Hilbert space. The exact solution is calculated in the form of a convergent series with easily computable components. Finally, some examples are given to illustrate the efficiency and applicability of the method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a new reproducing kernel space is constructed skillfully in order to solve a class of nonlinear four-point boundary value problems. The exact solution of the linear problem can be expressed in the form of series and the approximate solution of the nonlinear problem is given by the iterative formula. Compared with known investigations, the advantages of our method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Meanwhile we present the convergent theorem, complexity analysis and error estimation. The performance of the new method is illustrated with several numerical examples.  相似文献   

9.
The reaction–diffusion equations with initial condition and nonlocal boundary conditions are discussed in this article. A reproducing kernel space is constructed, in which an arbitrary function satisfies the initial condition and nonlocal boundary conditions of the reaction‐diffusion equations. Based on the reproducing kernel space, a new algorithm for solving the reaction–diffusion equations with initial condition and nonlocal boundary conditions is presented. Some examples are displayed to demonstrate the validity and applicability of the proposed method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

10.
Aveiro method is a sparse representation method in reproducing kernel Hilbert spaces, which gives orthogonal projections in linear combinations of reproducing kernels over uniqueness sets. It, however, suffers from determination of uniqueness sets in the underlying reproducing kernel Hilbert space. In fact, in general spaces, uniqueness sets are not easy to be identified, let alone the convergence speed aspect with Aveiro method. To avoid those difficulties, we propose an new Aveiro method based on a dictionary and the matching pursuit idea. What we do, in fact, are more: The new Aveiro method will be in relation to the recently proposed, the so‐called pre‐orthogonal greedy algorithm involving completion of a given dictionary. The new method is called Aveiro method under complete dictionary. The complete dictionary consists of all directional derivatives of the underlying reproducing kernels. We show that, under the boundary vanishing condition bring available for the classical Hardy and Paley‐Wiener spaces, the complete dictionary enables an efficient expansion of any given element in the Hilbert space. The proposed method reveals new and advanced aspects in both the Aveiro method and the greedy algorithm.  相似文献   

11.
In this study, we present an efficient computational method for finding approximate solution of the multi term time‐fractional diffusion equation. The approximate solution is presented in the form of a finite series in a reproducing kernel Hilbert space. The convergence of proposed method is studied under some hypothesis which provides the theoretical basis of proposed method for solving the considered equation. Finally, some numerical experiments are considered to examine the efficiency of proposed method in the sense of accuracy and CPU time.  相似文献   

12.
This paper investigates the analytical approximate solutions of third order three-point boundary value problems using reproducing kernel method. The solution obtained by using the method takes the form of a convergent series with easily computable components. However, the reproducing kernel method can not be used directly to solve third order three-point boundary value problems, since there is no method of obtaining reproducing kernel satisfying three-point boundary conditions. This paper presents a method for solving reproducing kernel satisfying three-point boundary conditions so that reproducing kernel method can be used to solve third order three-point boundary value problems. Results of numerical examples demonstrate that the method is quite accurate and efficient for singular second order three-point boundary value problems.  相似文献   

13.
Based on the geometric grid information as geometric coordinates, an algebraic multigrid (AMG) method with the interpolation reproducing the rigid body modes (namely the kernel elements of semi-definite operator arising from linear elasticity) is constructed, and such method is applied to the linear elasticity problems with a traction free boundary condition and crystal problems with free boundary conditions as well. The results of various numerical experiments in two dimensions are presented. It is shown from the numerical results that the constructed AMG method is robust and efficient for such semi-definite problems, and the convergence is uniformly bounded away from one independent of the problem size. Furthermore, the AMG method proposed in this paper has better convergence rate than the commonly used AMG methods. Simultaneously, an AMG method that can preserve the quotient space, which means that if the exact solution of original problem belongs to the quotient space of discrete operator considered, then the numerical solution of AMG method is convergent in the same quotient space, is obtained using the technique of orthogonal decomposition.  相似文献   

14.
该文给出了一个新的方法来求解带有积分边界条件的半线性热传导方程.方程的精确解以级数的形式在再生核空间中给出.证明了精确解的n项逼近是收敛于精确解的.同时给出了一些算例说明了这个方法的有效性.  相似文献   

15.
吴勃英 《计算数学》2001,23(2):231-238
1.引言 偏微分方程的近似解法一直是数值计算的重要内容之一。随着计算机的发展,各种实用的新方法也不断涌现.本文在再生核空间H (D)中给出二阶偏微分方程边值问题解析形式的级数解,该级数解具有如下特点:1.级数截断就可直接得到解析数值解;2.解析数值解的误差在空间范数意义下单调下降. 设 D=[a, b] x [c, d]是 R2中的任一矩形域, Г为边界,0,u(x,y)∈L2(D)且是实的绝对连续函数,中规定内积如下: 范数定义为: 山中已证明码(利是一个再生核函数空间,其再生校函数研X,认(,…表达式…  相似文献   

16.
The reproducing kernel function of a weighted Bergman space over domains in Cd is known explicitly in only a small number of instances. Here, we introduce a process of orthogonal norm expansion along a subvariety of (complex) codimension 1, which also leads to a series expansion of the reproducing kernel in terms of reproducing kernels defined on the subvariety. The problem of finding the reproducing kernel is thus reduced to the same kind of problem when one of the two entries is on the subvariety. A complete expansion of the reproducing kernel may be achieved in this manner. We carry this out in dimension d=2 for certain classes of weighted Bergman spaces over the bidisk (with the diagonal z1=z2 as subvariety) and the ball (with z2=0 as subvariety), as well as for a weighted Bargmann-Fock space over C2 (with the diagonal z1=z2 as subvariety).  相似文献   

17.
该文以再生核理论为基础,用移位Legendre多项式作为基函数构造了一个新的再生核空间,并给出了该空间下的再生核函数.与经典的再生核函数有所不同的是该空间下的再生核函数不再是分段函数,因此可以减小分数阶算子作用在核函数上时的计算量,使近似解更为精确.数值算例表明该方法的有效性.  相似文献   

18.
In this paper, we obtain a sequence of approximate solution converging uniformly to the exact solution of a class of fourth‐order nonlinear boundary value problems. Its exact solution is represented in the form of series in the reproducing kernel space. The n‐term approximation un(x) is proved to converge to the exact solution u(x). Moreover, the derivatives of un(x) are also convergent to the derivatives of u(x). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In the paper, a reproducing kernel method of solving singular integral equations (SIE) with cosecant kernel is proposed. For solving SIE, difficulties lie in its singular term. In order to remove singular term of SIE, an equivalent transformation is made. Compared with known investigations, its advantages are that the representation of exact solution is obtained in a reproducing kernel Hilbert space and accuracy in numerical computation is higher. On the other hand, the representation of reproducing kernel becomes simple by improving the definition of traditional inner product and requirements for image space of operators are weakened comparing with traditional reproducing kernel method. The final numerical experiments illustrate the method is efficient.  相似文献   

20.
We consider two numerical solution approaches for the Dym initial value problem using the reproducing kernel Hilbert space method. For each solution approach, the solution is represented in the form of a series contained in the reproducing kernel space, and a truncated approximate solution is obtained. This approximation converges to the exact solution of the Dym problem when a sufficient number of terms are included. In the first approach, we avoid to perform the Gram-Schmidt orthogonalization process on the basis functions, and this will decrease the computational time. Meanwhile, in the second approach, working with orthonormal basis elements gives some numerical advantages, despite the increased computational time. The latter approach also permits a more straightforward convergence analysis. Therefore, there are benefits to both approaches. After developing the reproducing kernel Hilbert space method for the numerical solution of the Dym equation, we present several numerical experiments in order to show that the method is efficient and can provide accurate approximations to the Dym initial value problem for sufficiently regular initial data after relatively few iterations. We present the absolute error of the results when exact solutions are known and residual errors for other cases. The results suggest that numerically solving the Dym initial value problem in reproducing kernel space is a useful approach for obtaining accurate solutions in an efficient manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号