首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double‐responsive core‐shell‐corona complex micelles for applications in drug release were formed from self‐assembly of two diblock copolymers PtBA‐b‐ PNIPAM and PtBA‐b‐P4VP. The two diblock copolymers coaggregated into core‐shell complex micelles in acidic water with the hydrophobic PtBA blocks as the common core and soluble PNIPAM/P4VP blocks as the mixed shell. Increasing temperature or pH value, the micelles converted into core‐shell‐corona micelles because of the collapse of PNIPAM or P4VP blocks as the inner shell and soluble P4VP or PNIPAM chains stretching outside as the outer corona. The anti‐inflammation drug naproxen (NAP) was loaded as the model drug in micelles in acidic water and released because of the ionization of NAP in alkaline solutions. Compared with pure core‐shell micelles, release of NAP from core‐shell‐corona complex micelles avoided the burst diffusion and the release rate is more easily controlled by tuning the composition of the mixtures or by adjusting the pH of the medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1804–1810, 2009  相似文献   

2.
A novel primary amine‐containing monomer, 1‐(3′‐aminopropyl)‐4‐acrylamido‐1,2,3‐triazole hydrochloride (APAT), was prepared from N‐propargylacrylamide and 3‐azidopropylamine hydrochloride via copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition (click reaction). Poly(N‐isopropylacrylamide)‐b‐poly(1‐(3′‐aminopropyl)‐4‐acrylamido‐1,2,3‐triazole hydrochloride), PNIPAM‐b‐PAPAT, was then synthesized via consecutive reversible addition‐fragmentation chain transfer polymerizations of N‐isopropylacrylamide and APAT. In aqueous solution, the obtained thermoresponsive double hydrophilic block copolymer dissolves molecularly at room temperature and self‐assembles into micelles with PNIPAM cores and PAPAT shells at elevated temperature. Because of the presence of highly reactive primary amine moieties in PAPAT block, two types of covalently stabilized nanoparticles namely core crosslinked and shell crosslinked micelles with ‘inverted’ core‐shell nanostructures were facilely prepared upon the addition of glutaric dialdehyde at 25 and 50 °C, respectively. In addition, the obtained structure‐fixed micelles were incorporated with gold nanoparticles via in situ reduction of preferentially loaded HAuCl4. High resolution transmission electron microscopy revealed that gold nanoparticles can be selectively loaded into the crosslinked cores or shells, depending on the micelle templates employed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6518–6531, 2008  相似文献   

3.
Fluorinated polymer particles with grafting sulfonate chains, which showed high dispersion stability in aqueous media, were synthesized by the crosslinking of block copolymer micelles. A crosslinkable block copolymer, poly[(2,3,4,5,6‐pentafluorostyrene)‐co‐4‐(1‐methylsilacyclobutyl)styrene]‐b‐poly(neopentyl 4‐styrenesulfonate), composed of a statistical copolymer segment of 2,3,4,5,6‐pentafluorostyrene with 4‐(1‐methylsilacyclobutyl)styrene and a neopentyl 4‐styrenesulfonate segment, was prepared by the nitroxy‐mediated living radical polymerization of a 2,3,4,5,6‐pentafluorostyrene/4‐(1‐methylsilacyclobutyl)styrene mixture and neopentyl 4‐styrenesulfonate. The block copolymer formed micelles with a poly[(2,3,4,5,6‐pentafluorostyrene)‐co‐4‐(1‐methylsilacyclobutyl)styrene] core in acetonitrile, which were crosslinked via the ring‐opening reaction of silacyclobutyl groups in the core by a treatment with a platinum catalyst. The deprotection of sulfonate groups in the micelle corona by exposure to trimethylsilyl iodide and a treatment with aqueous HCl, followed by neutralization with aqueous NaOH, provided a polymer particle with polymer chains of sodium 4‐styrenesulfonate grafted on its surface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1316–1323, 2007  相似文献   

4.
The solubilization sites provided by micelles formed by a diblock copolymer with one neutral hydrophobic block, polystyrene, and one charged hydrophilic block, poly(acrylic acid) or poly(methacrylic acid), have been studied by fluorescence quenching of pyrene by polar and nonpolar quenchers. Pyrene solubilized into these micelles is distributed between the inner corona and the micelle core. The fraction of pyrene residing in the inner corona is almost unity for star micelles, where the corona-forming blocks are larger than the core-forming blocks, and around 0.5 for crew-cut micelles where the opposite situation prevails. The kinetics of the quenching process depends on the pyrene location, i.e. is static in the micelle core, and largely dynamic in the inner corona at low quencher concentration. The rate constants for fluorescence quenching by nitromethane are shown to increase with increasing pH.  相似文献   

5.
Here we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water‐soluble A blocks consisting of N,N‐dimethylacrylamide and pH‐responsive B blocks of N,N‐dimethylvinylbenzylamine. To our knowledge, this represents the first example of an acrylamido–styrenic block copolymer prepared directly in a homogeneous aqueous solution. The best blocking order [with poly(N,N‐dimethylacrylamide) as a macro‐chain‐transfer agent] yielded well‐defined block copolymers with minimal homopolymer impurities. The reversible aggregation of these block copolymers in aqueous media was studied with 1H NMR spectroscopy and dynamic light scattering. Finally, an example of core‐crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1724–1734, 2004  相似文献   

6.
Aqueous reversible addition‐fragmentation chain transfer polymerization was used to synthesize poly(N‐[3‐(dimethylamino)propyl]acrylamide) (PDMAPA) cationic homopolymers and micelle‐forming, pH‐responsive, amphiphilic diblock copolymers of poly(sodium 2‐acrylamido‐2‐methyl‐1‐propanesulfonate‐blockN‐acryloyl‐L ‐alanine) (P(AMPS‐b‐AAL)). At low pH, the AAL blocks are protonated rendering them hydrophobic, whereas the AMPS blocks remain anionically charged because of the pendant sulfonate groups. Self‐assembly results in core–shell micelles consisting of hydrophobic cores of AAL and negatively charged shells of AMPS. Using solutions of these micelles with anionic coronas and of the cationic homopolymer PDMAPA, layer‐by‐layer (LbL) films were assembled at low pH, maintaining the micelle structures. Several block copolymers with varying AMPS and AAL block lengths were synthesized and used in the formation of LbL films. The thickness and morphology of the films were examined using ellipsometry and atomic force microscopy. The stimuli‐responsive behavior can be triggered by submersion of the film in water at neutral pH to disrupt the micelles. This behavior was monitored by observing the decrease in film thickness and alteration of the film morphology. The micelles were also loaded with a model hydrophobic compound, pyrene, and incorporated into LbL films. The release of pyrene from the films was monitored by fluorescence spectroscopy at varying pH values (1, 3, 5, and 7). As the pH of the solution increases, the rate of release increases. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Double hydrophilic diblock copolymer, poly(N,N‐dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide‐co‐3‐azidopropylacrylamide) (PDMA‐b‐P(NIPAM‐co‐AzPAM), containing azide moieties in one of the blocks was synthesized via consecutive reversible addition‐fragmentation chain transfer polymerization. The obtained diblock copolymer molecularly dissolves in aqueous solution at room temperature, and can further supramolecularly self‐assemble into core‐shell nanoparticles consisting of thermoresponsive P(NIPAM‐co‐AzPAM) cores and water‐soluble PDMA coronas above the lower critical solution temperature of P(NIPAM‐co‐AzPAM) block. As the micelle cores contain reactive azide residues, core crosslinking can be facilely achieved upon addition of difunctional propargyl ether via click chemistry. In an alternate approach in which the PDMA‐b‐P(NIPAM‐co‐AzPAM) diblock copolymer was dissolved in a common organic solvent (DMF), the core‐crosslinked (CCL) micelles can be fabricated via “click” crosslinking upon addition of propargyl ether and subsequent dialysis against water. CCL micelles prepared by the latter approach typically possess larger sizes and broader size distributions, compared with that obtained by the former one. In both cases, the obtained (CCL) micelles possess thermoresponsive cores, and the swelling/shrinking of which can be finely tuned with temperature, rendering them as excellent candidates as intelligent drug nanocarriers. Because of the high efficiency and quite mild conditions of click reactions, we expect that this strategy can be generalized for the structural fixation of other self‐assembled nanostructures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 860–871, 2008  相似文献   

8.
Mixed micelle formation between two oppositely charged diblock copolymers that have a common thermosensitive nonionic block of poly(N‐isopropylacrylamide) (PNIPAAM) has been studied. The block copolymer mixed solutions were investigated under equimolar charge conditions as a function of both temperature and total polymer concentrations by turbidimetry, differential scanning calorimetry, two‐dimensional proton nuclear magnetic nuclear Overhauser effect spectroscopy (2D 1H NMR NOESY), dynamic light scattering, and small angle X‐ray scattering measurements. Well‐defined and electroneutral cylindrical micelles were formed with a radius and a length of about 3 nm and 35 nm, respectively. In the micelles, the charged blocks built up a core, which was surrounded by a corona of PNIPAAM chains. The 2D 1H NMR NOESY experiments showed that a minor block mixing occurred between the core blocks and the PNIPAAM blocks. By approaching the lower critical solution temperature of PNIPAAM, the PNIPAAM chains collapsed, which induced aggregation of the micelles. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1457–1469  相似文献   

9.
This article reports on optically active core/shell nanoparticles constituted by chiral helical polymers and prepared by a novel approach: using self‐assembled polymer micelles as reactive nanoreactors. Such core/shell nanoparticles were composed of optically active helical‐substituted polyacetylene as the core and thermosensitive poly(N‐isopropylacrylamide) as the shell. The synthetic procedure is divided into three major steps: (1) synthesis of amphiphilic diblock copolymer bearing polymerizable C[tbond]C bonds via atom transfer radical polymerization, followed by (2) self‐assembly of the diblock copolymer to form polymer micelles; and (3) catalytic emulsion polymerization of substituted acetylene monomer conducted using the polymer micelles as reactive nanoreactors leading to the core/shell nanoparticles. The core/shell nanoparticles simultaneously exhibited remarkable optical activity and thermosensitivity. The facile, versatile synthesis methodology opens new approach toward preparing novel multifunctional core/shell nanoparticles.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
We report the synthesis and characterization of well‐defined homo‐ and diblock copolymers containing poly(furfuryl glycidyl ether) (PFGE) via living anionic ring‐opening polymerization using different initiators. The obtained materials were characterized by SEC, MALDI‐TOF MS, and 1H NMR spectroscopy and molar masses of up to 9400 g/mol were obtained for PFGE homopolymers. If the amphiphilic diblock copolymer PEG‐block‐PFGE was dissolved in water, micelles with a PFGE core and a PEG corona were formed. Hereby, the hydrophobic PFGE core domains were used for the incorporation of a suitable bismaleimide and heating to 60 °C induced the crosslinking of the micellar core via Diels‐Alder chemistry. This process was further shown to be reversible. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
We introduce a novel and versatile approach for preparing hollow multilayer capsules containing functional hydrophobic components. Protonated polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and anionic polystyrene-block-poly(acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films onto polystyrene (PS) colloids. After removing the PS colloids, the stabilities of the formed BCM hollow capsules were found to be strongly dependent on the charge density of the hydrophilic corona segments (i.e., P4VP and PAA block segments) as well as the relative molecular weight ratio of hydrophobic core (i.e., PS segments) blocks and hydrophilic corona shells. Furthermore, in the case of incorporating hydrophobic fluorescent dyes into the PS core blocks of micelles, the hairy/hairy BCM multilayers showed well-defined fluorescent images after colloidal template removal process. These phenomena are mainly caused by the relatively high degree of electrostatic interdigitation between the protonated and anionic corona block shells.  相似文献   

12.
Bioinspired core‐bound polymeric micelles, based on hydrogen bonding and photo‐crosslinking, of thymine have been prepared from poly(vinylbenzylthymine)‐b‐poly(vinylbenzyltriethylammonium chloride). The amphiphilic block copolymer was synthesized by 2,2‐tetramethylpiperidin‐1‐oxyl‐mediated living radical polymerization in water/ethylene glycol solution. Micelle characterization and critical micelle concentration measurements demonstrated that the hydrogen bonding of the attached thymine units stabilizes the micelles. Further, core‐crosslinked polymeric micelles were formed by ultraviolet (UV) radiation showing that the stability of the micelle could be controlled by the UV crosslinking of the attached thymines. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Through the use of the methods of turbidimetry, UV spectrophotometry, fluorescence spectroscopy, dynamic light scattering, and ultracentrifugation, micelle formation is studied for cationic (polysty-rene-poly-N-ethyl-4-vinylpyridium bromide) and anionic (polystyrene-sodium polyacrylate) diblock copolymers containing identical polystyrene blocks in dilute aqueous saline solutions. Mixing of aqueous dispersions of individual micelles is accompanied by the formation of only insoluble products, which likely are intermicellar interpolyelectrolyte complexes. At the same time, mixing of diblock copolymers in a nonselective solvent and its subsequent gradient replacement with water during suppressed interpolyelectrolyte interactions yields mixed diblock copolymer micelles, which are found to be dispersionally stable in an excess of charged units of any polymer component. The micelles are composed of an insoluble polystyrene core and a mixed interpolyelectrolyte corona, and their hydrodynamic characteristics are controlled by the ratio of charged units in the mixed diblock copolymers. The mixed micelles are found to be able to interact with the macromolecules of a homopolyelectrolyte, sodium poly(styrene sulfonate), in aqueous solutions and form ternary complexes. In this case, depending on the composition of the mixed micelles, ternary complexes can be dispersionally stable or can aggregate and precipitate.  相似文献   

14.
Miktoarm star triblock copolymers mu-[poly(ethylethylene)][poly(ethylene oxide)][poly(perfluoropropylene oxide)] self-assemble in dilute aqueous solution to give multicompartment micelles with the cores consisting of discrete poly(ethylethylene) and poly(perfluoropropylene oxide) domains. Tetrahydrofuran is a selective solvent for both the poly(ethylethylene) and poly(ethylene oxide) blocks, and thus in tetrahydrofuran mixed corona micelles are favored with poly(perfluoropropylene oxide) cores. The introduction of tetrahydrofuran into water induces an evolution from multicompartment micelles to mixed corona [poly(ethylethylene) + poly(ethylene oxide)] micelles, as verified by dynamic light scattering and nuclear magnetic resonance spectroscopy. A mixed solvent containing 60 wt % tetrahydrofuran corresponds to the transition point, as verified by analysis of a poly(ethylethylene)-poly(ethylene oxide) diblock copolymer in the same solvent mixtures. Furthermore, cryogenic transmission electron microscopy suggests that, as the poly(ethylethylene) block transitions from the core to the corona, the micelle morphologies evolve from disks to oblate ellipsoid micelles (with some vesicles), with worms and spheres evident at intermediate compositions.  相似文献   

15.
An asymmetric triblock copolymer, poly(styrene-b-acrylic acid-b-ethylene glycol) (PS-b-PAA-b-PEG), was synthesized via reversible addition-fragmentation chain transfer controlled radical polymerization. Micelles of PS-b-PAA-b-PEG with PS core, PAA shell, and PEG corona were then prepared in aqueous solutions, followed by extensive characterization based on dynamic light scattering, zeta-potential, and transmission electron microscopy (TEM) measurements. The well-characterized micelles were used to fabricate hollow nanospheres of CaCO(3) as a template. It was elucidated from TEM measurements that the hollow nanospheres have a uniform size with cavity diameters of ca. 20 nm. The X-ray diffraction analysis revealed a high purity and crystallinity of the hollow nanospheres. The hollow CaCO(3) nanospheres thus obtained have been used for the controlled release of an anti-inflammatory drug, naproxen. The significance of this study is that we have overcome a previous difficulty in the synthesis of hollow CaCO(3) nanospheres. After mixing of Ca(2+) and CO(3)(2-) ions, the growth of CaCO(3) is generally quite rapid to induce large crystal, which prevented us from obtaining hollow CaCO(3) nanospheres with controlled structure. However, we could solve this issue by using micelles of PS-b-PAA-b-PEG as a template. The PS core acts as a template that can be removed to form a cavity of hollow CaCO(3) nanospheres, the PAA shell is beneficial for arresting Ca(2+) ions to produce CaCO(3), and the PEG corona stabilizes the CaCO(3)/micelle nanocomposite to prevent secondary aggregate formation.  相似文献   

16.
A double hydrophilic block copolymer composed of poly(acrylic acid) (PAA) and poly(4‐vinyl pyridine) (P4VP) was obtained through hydrolysis of diblock copolymer of poly(tert‐butyl acrylate) (PtBA) and P4VP synthesized using atom transfer radical polymerization. Water‐soluble micelles with PAA core and P4VP corona were observed at low (acidic) pH, while micelles with P4VP core and PAA corona were formed at high (basic) pH. Two metalloporphyrins, zinc tetraphenylporphyrin (ZnTPP) and cobalt tetraphenylporphyrin (CoTPP), were used as model compounds to investigate the encapsulation of hydrophobic molecules by both types of micelles. UV–vis spectroscopic measurements indicate that micelles with P4VP core are able to entrap more ZnTPP and CoTPP as a result of the axial coordination between the transition metals and the pyridine groups. The study found that metalloporphyrins encapsulated by the micelles with PAA core could be released on pH increase, while those entrapped by the micelles with P4VP core could be released on pH decrease. This behavior originates from the two‐way pH change‐induced disruption of PAA‐b‐P4VP micelles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1734–1744, 2006  相似文献   

17.
A hetero‐arm star polymer, poly(ethylene glycol)‐poly(N‐isopropylacrylamide)‐poly(L‐lysine) (PEG‐PNIPAM‐PLys), was synthesized by “clicking” the azide group at the junction of PEG‐b‐PNIPAM diblock copolymer with the alkyne end‐group of poly(L‐lysine) (PLys) homopolymer via 1,3‐dipolar cycloaddition. The resultant polymer was characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopes. Surprisingly, the PNIPAM arm of this hetero‐arm star polymer nearly lose its thermal responsibility. It is found that stable polyelectrolyte complex micelles are formed when mixing the synthesized polymer with poly(acrylic acid) (PAA) in water. The resultant polyelectrolyte complex micelles are core‐shell spheres with the ion‐bonded PLys/PAA chains as core and the PEG and PNIPAM chains as shell. The PNIPAM shell is, as expected, thermally responsive. However, its lower critical solution temperature is shifted to 37.5 °C, presumably because of the existence of hydrophilic components in the micelles. Such star‐like PEG‐PNIPAM‐PLys polymer with different functional arms as well as its complexation with anionic polymers provides an excellent and well‐defined model for the design of nonviral vectors to deliver DNA, RNA, and anionic molecular medicines. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1450–1462, 2009  相似文献   

18.
Aggregation behavior including dilute solution property and surface‐activity of the amphiphilic random copolymer composed of 2‐(acrylamido)‐2‐methylpropanesulfonic acid and tris(trimethylsiloxy)silylpropylmethacrylate (AMPS/TRIS copolymer) in aqueous solution were studied by static light scattering (SLS), dynamic light scattering (DLS), surface tension measurement, and transmission electron microscopy (TEM). The surface tension measurement made it clear that AMPS/TRIS copolymer exhibited weaker surface‐activity than a typical low‐molecular weight surfactant sodium dodecyl sulfate in water, that is, there were no plateau of surface tension γ versus concentration and no critical micelle concentration (CMC) in the whole concentration studied. SLS and DLS analyses, and TEM revealed that AMPS/TRIS copolymer self‐associated into imperfect core‐shell micelles having hydrophobic TRIS core surrounded by hydrophilic AMPS shell in water. AMPS shell was considered as a hard shell due to the stiffness of AMPS chain in water. TRIS chain could not densely aggregate in water due to the large steric hindrance between bulky trimethylsiloxy groups despite its hydrophobic nature, thereby providing TRIS core with less‐dense structure. The balance between the spreading force of stiff AMPS chain and the cohesion force of bulky TRIS chain provides the driving force for forming the unique micelle having less‐dense TRIS core and hard AMPS shell. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

19.
《European Polymer Journal》1987,23(6):463-467
The diblock copolymer poly(styrene-b-dimethyl siloxane) (PS-PDMS) in n-dodecane forms multimolecular micelles in which insoluble PS blocks associate in a core surrounded by a shell of solvated PDMS blocks. Small angle X-ray scattering data have been obtained for PS-PDMS concentrations in the range 0.5–10%. Intensity data have been interpreted by the Guinier method in order to determine the radius of the PS core of a micelle. Scattering intensities exhibit negative deviations from Porod's law, which is characteristic of a diffuse interfacial layer, permitting the determination of the thickness of the shell of solvated PDMS blocks. Scattering curves for solutions having high PS-PDMS concentrations have a peak maximum indicating ordered arrays of micelles.  相似文献   

20.
Diblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene (polyVSA‐b‐polySt) and triblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene‐block‐poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA‐b‐polySt‐b‐polyVSA), consisting of silazane and nonsilazane segments, were prepared by the living anionic polymerization of 1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane and styrene. PolyVSA‐b‐polySt formed micelles having a poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA) core in N,N‐dimethylformamide, whereas polyVSA‐b‐polySt and polyVSA‐b‐polySt‐b‐polyVSA formed micelles having a polyVSA shell in n‐heptane. The micelles with a polyVSA core were core‐crosslinked by UV irradiation in the presence of diethoxyacetophenone as a photosensitizer, and the micelles with a polyVSA shell were shell‐crosslinked by UV irradiation in the presence of diethoxyacetophenone and 1,6‐hexanedithiol. These crosslinked micelles were pyrolyzed at 600 °C in N2 to give spherical ceramic particles. The pyrolysis process was examined by thermogravimetry and thermogravimetry/mass spectrometry. The morphologies of the particles were analyzed by atomic force microscopy and transmission electron microscopy. The chemical composition of the pyrolysis products was analyzed by X‐ray fluorescence spectroscopy and Raman scattering spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4696–4707, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号