共查询到20条相似文献,搜索用时 0 毫秒
1.
Maria‐Evgenia Kourti Georgios C. Vougioukalakis Nikos Hadjichristidis Marinos Pitsikalis 《Journal of polymer science. Part A, Polymer chemistry》2011,49(11):2520-2527
The cationic ring‐opening polymerization of 2‐methyl‐2‐oxazoline and 2‐phenyl‐2‐oxazoline was efficiently used using bis(η5‐cyclopentadienyl)dimethyl zirconium, Cp2ZrMe2, or bis(η5‐tert‐butyl‐cyclopentadienyl)dimethyl hafnium in combination with either tris(pentafluorophenyl)borate or tetrakis(pentafluorophenyl)borate dimethylanilinum salt as initiation systems. The evolution of polymer yield, molecular weight, and molecular weight distribution with time was examined. In addition, the influence of the initiation system and the monomer on the control of the polymerization was studied. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 000: 000–000, 2011 相似文献
2.
Hanneke M. L. Lambermont‐Thijs Mark J. H. C. Jochems Richard Hoogenboom Ulrich S. Schubert 《Journal of polymer science. Part A, Polymer chemistry》2009,47(23):6433-6440
In this study, the structure–property relationships for a series of statistical 2‐nonyl‐2‐oxazoline (NonOx) and 2‐phenyl‐2‐oxazoline (PhOx) copolymers were investigated for the first time. The copolymerization kinetics were studied and the reactivity ratios were calculated to be rNonOx = 7.1 ± 1.4 and rPhOx = 0.02 ± 0.1 revealing the formation of gradient copolymers. The synthesis of a systematical series of NonOx–PhOx copolymers is described, whereby the amount of NonOx was increased in steps of 10 mol %. The thermal and surface properties were investigated for this series of well‐defined copolymers. The thermal properties revealed a linear decrease in glass transition temperature for copolymers containing up to 39 wt % NonOx. Furthermore, the melting temperature of the copolymers containing 0 to 55 wt % PhOx linearly decreased most likely due to disturbance of the NonOx crystalline domains by incorporation of PhOx in the NonOx part of the copolymer. The surface energies of spincoated polymer films revealed a strong decrease in surface energy upon incorporation of NonOx in the copolymers due to strong phase separation between NonOx and PhOx allowing the NonOx chains to orient to the surface. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6433–6440, 2009 相似文献
3.
Brieuc Guillerm Sophie Monge Vincent Lapinte Jean‐Jacques Robin 《Journal of polymer science. Part A, Polymer chemistry》2013,51(5):1118-1128
In this contribution, we report on the self‐assembly in water of original amphiphilic poly(2‐methyl‐2‐oxazoline)‐b‐poly(tert‐butyl acrylate) copolymers, synthesized by copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction. For such purpose, (poly(2‐methyl‐2‐oxazoline)) and (poly(tert‐butyl acrylate)) are first prepared by cationic ring‐opening polymerization and atom transfer radical polymerization, respectively. Well‐defined polymeric building blocks, ω‐N3‐P(t‐BA) and α‐alkyne‐P(MOx), bearing reactive chain end groups, are accurately characterized by matrix‐assisted laser desorption ionization time‐of‐flight spectroscopy. Then, P(MOx)n‐b‐P(t‐BA)m are achieved by polymer–polymer coupling and are fully characterized by diffusion‐ordered NMR spectroscopy and size exclusion chromatography, demonstrating the obtaining of pure amphiphilic copolymers. Consequently, the latter lead to the formation in water of well‐defined monodisperse spherical micelles (RH = 40–60 nm), which are studied by fluorescence spectroscopy, static light scattering, atomic force microscope, and transmission electronic microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
4.
Yanzhai Wang Junjiao Yang Jing Yang 《Journal of polymer science. Part A, Polymer chemistry》2011,49(18):3988-3996
In this study, a novel type of amphiphilic block copolymers poly(lactic acid)‐block‐poly(ascorbyl acrylate) (PLA‐block‐PAAA) with biodegradable poly(lactic acid) as hydrophobic block and poly(ascorbyl acrylate) (PAAA) as hydrophilic block was successfully developed by a combination of ring‐opening polymerization and atom transfer radical polymerization, followed by hydrogenation under normal pressure. The chemical structures of the desired copolymers were characterized by 1H NMR and gel permeation chromatography. The thermal physical properties and crystallinity were investigated by thermogravimetric analysis, differential scanning calorimetry, and wide angle X‐ray diffraction, respectively. Their self‐assembly behavior was monitored by fluorescence‐probe technique and turbidity change using UV–vis spectrometer, and the morphology and size of the nanocarriers via self‐assembly were detected by cryo‐transmission electron microscopy and dynamic light scattering. These polymeric micelles with PAAA shell extending into the aqueous solution have potential abilities to act as promising nanovehicles for targeting drug delivery. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
5.
Helen Tran Harrison M. Bergman Victor R. de la Rosa Samarendra Maji Kaia R. Parenti Richard Hoogenboom Luis M. Campos 《Journal of polymer science. Part A, Polymer chemistry》2019,57(12):1349-1357
Herein, we report the design and synthesis of a block copolymer (BCP) with a high Flory–Huggins interaction parameter to access 10 nm feature sizes for potential lithographic applications. The investigated BCP is poly[(2‐methyl‐2‐oxazoline)‐block‐styrene] (PMeOx‐b‐PS), where the PMeOx segment functions as a hydrophilic segment. Two BCPs with different molecular weights were prepared using PMeOx as macroinitiator for copper(0) mediated controlled radical polymerization. The thin film self‐assembly of the obtained PMeOx‐b‐PS was performed by solvent annealing and investigated by atomic force microscopy. Both polymers formed PMeOx cylinders in a PS matrix with an average cylinder diameter of 10.5 nm. Additionally, the ability of the PMeOx domains to selectively degrade under ultraviolet irradiation was explored. It was shown that scission of the PMeOx block does occur selectively, and furthermore that the degraded domains can be removed while leaving the PS matrix intact. By combining synthetic accessibility, small feature sizes, and a selectively cleavable domain, this new BCP system holds significant promise as a lithographic mask for patterning surfaces with high precision. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1349–1357 相似文献
6.
Tobias Rudolph Adam Nunns Steffi Stumpf Christian Pietsch Felix H. Schacher 《Macromolecular rapid communications》2015,36(18):1651-1657
The step‐wise solution self‐assembly of double crystalline organometallic poly(ferrocenyldimethylsilane)‐block‐poly(2‐iso‐propyl‐2‐oxazoline) (PFDMS‐b‐PiPrOx) diblock copolymers is demonstrated. Two block copolymers are obtained by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC), featuring PFDMS/PiPrOx weight fractions of 46/54 (PFDMS30‐b‐PiPrOx75) and 30/70 (PFDMS30‐b‐PiPrOx155). Nonsolvent induced crystallization of PFDMS in acetone leads in both cases to cylindrical micelles with a PFDMS core. Afterward, the structures are transferred into water for sequential temperature‐induced crystallization of the PiPrOx corona, leading to hierarchical double crystalline superstructures, which are investigated using scanning electron microscopy, wide angle X‐ray scattering, and differential scanning calorimetry.
7.
Matthias Lobert Richard Hoogenboom Charles‐André Fustin Jean‐François Gohy Ulrich S. Schubert 《Journal of polymer science. Part A, Polymer chemistry》2008,46(17):5859-5868
Here, we present the one‐step synthesis of 2‐(m‐difluorophenyl)‐2‐oxazoline and its use as a monomer for microwave‐assisted statistical cationic ring‐opening copolymerizations (CROP). Well‐defined amphiphilic gradient copolymers, as evidenced by the polymerization kinetics, were prepared using 2‐ethyl‐2‐oxazoline as comonomer and methyl tosylate as initiator in nitromethane at 140 °C. The resulting gradient copolymers (DP = 60 and 100) were characterized by means of size exclusion chromatography and 1H NMR spectroscopy. In the second part, we focus on a detailed study of the self‐assembly of the copolymers in aqueous solution using atomic force microscopy and dynamic light scattering. Both methods revealed the self‐assembly of the gradient copolymers into spherical micelles. To quantify the influence of the fluorine atoms and the monomer distribution on the self‐assembly, a comparative study with gradient copolymers of 2‐phenyl‐2‐oxazoline and 2‐ethyl‐2‐oxazoline was performed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5859–5868, 2008 相似文献
8.
Kang‐Yu Peng Shiu‐Wei Wang Ren‐Shen Lee 《Journal of polymer science. Part A, Polymer chemistry》2013,51(13):2769-2781
Amphiphilic diblock copolymers with various block compositions were synthesized on poly(2‐ethyl‐2‐oxazoline) (PEtOz) as a hydrophilic block and poly(4‐methyl‐ε‐caprolactone) (PMCL) or poly(4‐phenyl‐ε‐caprolactone) (PBCL) as a hydrophobic block. These PEtOz‐b‐PMCL and PEtOz‐b‐PBCL copolymers consisting of soft domains of amorphous PEtOz and PM(B)CL had no melting endothermal peaks but displayed Tg. The lower critical solution temperature (LCST) values for the PEtOz‐b‐PMCL, and the PEtOz‐b‐PBCL aqueous solution were observed to shift to lower temperature than PEtOz homopolymers. Their aqueous solutions were characterized using fluorescence techniques and dynamic light scattering (DLS). The block copolymers formed micelles with critical micelle concentrations (CMCs) in the range 0.6–11.1 mg L?1 in an aqueous phase. As the length of the hydrophobic PMCL or PBCL blocks elongated, lower CMC values were generated. The mean diameters of the micelles were between 127 and 318 nm, with PDI in the range of 0.06–0.21, suggesting nearly monodisperse size distributions. The drug entrapment efficiency and drug‐loading content of micelles depend on block polymer compositions. In vitro cell viability assay showed that PEtOz‐b‐PMCL has low cytotoxicity. Doxorubicin hydrochloride (DOX)‐loaded micelles facilitated human cervical cancer (HeLa) cell uptake of DOX; uptake was completed within 2 h, and DOX was able to reach intracellular compartments and enter the nuclei by endocytosis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2769–2781 相似文献
9.
Richard Hoogenboom Hanneke M. L. Thijs Martin W. M. Fijten Bart M. van Lankvelt Ulrich S. Schubert 《Journal of polymer science. Part A, Polymer chemistry》2007,45(3):416-422
The microwave‐assisted statistical copolymerization of 2‐phenyl‐2‐oxazoline with 2‐methyl‐2‐oxazoline or 2‐ethyl‐2‐oxazoline is discussed in this contribution. Kinetic studies of these statistical copolymerizations as well as reactivity ratio determinations were performed to investigate the monomer distribution in these copoly(2‐oxazoline)s, demonstrating the formation of quasi‐diblock copolymers. In addition, the synthesis of copolymer series with monomer concentrations ranging from 0 to 100 mol % is described. These copolymer series were characterized with 1H NMR spectroscopy, gas chromatography, and gel permeation chromatography. Moreover, the glass‐transition temperatures and solubility of these copolymers were studied, and this revealing better mixing of poly(2‐methyl‐2‐oxazoline) (pMeOx) with poly(2‐phenyl‐2‐oxazoline) (pPhOx) than poly(2‐ethyl‐2‐oxazoline) (pEtOx) with poly(2‐phenyl‐2‐oxazoline) (pPhOx). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 416–422, 2007. 相似文献
10.
Li Yuan Wulian Chen Jing Li Jianhua Hu Jianjun Yan Dong Yang 《Journal of polymer science. Part A, Polymer chemistry》2012,50(21):4579-4588
A series of well‐defined amphiphilic triblock copolymers, poly(ethylene glycol)‐b‐poly(tert‐butyl acrylate)‐b‐poly(2‐hydroxyethyl methacrylate) (PEG‐b‐PtBA‐b‐PHEMA), were synthesized via successive atom transfer radical polymerization (ATRP). ATRP of tBA was first initiated by PEG‐Br macroinitiator using CuBr/N,N,N′,N″,N′″‐pentamethyldiethylenetriamine as catalytic system to give PEG‐b‐PtBA diblock copolymer. This copolymer was then used as macroinitiator to initiate ATRP of HEMA, which afforded the target triblock copolymer, PEG‐b‐PtBA‐b‐PHEMA. The critical micelle concentrations of obtained amphiphilic triblock copolymers were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of formed aggregates were investigated by transmission electron microscopy and dynamic light scattering, respectively. Finally, an acid‐sensitive PEG‐b‐PtBA‐b‐P(HEMA‐CAD) prodrug via cis‐aconityl linkage between doxorubicin and hydroxyls of triblock copolymers with a high drug loading content up to 38%, was prepared to preliminarily explore the application of triblock copolymer in drug delivery. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
11.
《Journal of Polymer Science.Polymer Physics》2018,56(4):330-339
Numerical self‐consistent field (SCF) lattice computations allow a priori determination of the equilibrium morphology and size of supramolecular structures originating from the self‐assembly of neutral block copolymers in selective solvents. The self‐assembly behavior of poly(ethylene oxide)‐block‐poly‐ε‐caprolactone (PEO‐PCL) block copolymers in water was studied as a function of the block composition, resulting in equilibrium structure and size diagrams. Guided by the theoretical SCF predictions, PEO‐PCL block copolymers of various compositions have been synthesized and assembled in water. The size and morphology of the resulting structures have been characterized by small‐angle X‐ray scattering, cryogenic transmission electron microscopy, and multiangle dynamic light scattering. The experimental results are consistent with the SCF computations. These findings show that SCF is applicable to build up roadmaps for amphiphilic polymers in solution, where control over size and shape are required, which is relevant, for instance, when designing spherical micelles for drug delivery systems © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 330–339 相似文献
12.
This review covers recent advances in developing square arrays in thin films using block copolymers. Theoretical and experimental results from self‐assembly of block copolymers in bulk and thin films, directed self‐assembly of block copolymers confined in small wells, on substrates with arrays of posts, and on chemically nanopatterned substrates, as well as applications as nanolithography are reviewed. Some future work and hypothesis are discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 相似文献
13.
14.
Martin W. M. Fijten Richard Hoogenboom Ulrich S. Schubert 《Journal of polymer science. Part A, Polymer chemistry》2008,46(14):4804-4816
The aim of this research was to study the effect of the initiator on the resulting monomer distribution for the cationic ring‐opening copolymerization of 2‐ethyl‐2‐oxazoline (EtOx) and 2‐phenyl‐2‐oxazoline (PhOx). At first, kinetic studies were performed for the homopolymerizations of both monomers at 160 °C under microwave irradiation using four initiators. These initiators have the same benzyl‐initiating group but different leaving groups, Cl?, Br?, I?, and OTs?. The basicity of the leaving group affects the ratio of covalent and cationic propagating species and, thus, the polymerization rate. The observed differences in polymerization rates could be correlated to the concentration of cationic species in the polymerization mixture as determined by 1H NMR spectroscopy. In a next‐step, polymerization kinetics were determined for the copolymerizations of EtOx and PhOx with these four initiators. The reactivity ratios for these copolymerizations were calculated from the polymerization rates obtained for the copolymerizations. This approach allows more accurate determination of the copolymerization parameters compared to conventional methods using the composition of single polymers. When benzyl chloride (BCl) was used as an initiator, no copolymers could be obtained because its reactivity is too low for the polymerization of PhOx. With decreasing basicity of the used counterions (Br? > I? > OTs?), the reactivity ratios gradually changed from rEtOx = 10.1 and rPhOx = 0.30 to rEtOx = 7.9 and rPhOx = 0.18. However, the large difference in reactivity ratios will lead to the formation of quasi‐diblock copolymers in all cases. In conclusion, the used initiator does influence the monomer distribution in the copolymers, but for the investigated system the differences were so small that no difference in the resulting polymer properties is expected. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4804–4816, 2008 相似文献
15.
Indika Chandrasiri Daniel G. Abebe Sudipta Gupta Jon Steven Dal Williams William D. Rieger Briana L. Simms Mahesh Loku Yaddehige YeRim Noh Molly E. Payne Alexander W. Fortenberry Adam E. Smith Jan Ilavsky Scott M. Grayson Gerald J. Schneider Davita L. Watkins 《Journal of polymer science. Part A, Polymer chemistry》2019,57(13):1448-1459
Herein, we present a facile and comprehensive synthetic methodology for the preparation of polyester‐polyamidoamine (PAMAM) (i.e., polyester: polylactide [PLA] (hydrophobic) and polyamidoamine, PAMAM [hydrophilic]) polymers. A library of PLA‐PAMAM linear dendritic block copolymers (LDBCs) in which both l and d , l polylactide were employed in mass ratios of 30:70, 50:50, 70:30, and 90:10 (PLA:PAMAM) were synthesized and analyzed. When placed in aqueous media, the immiscibility of the hydrophilic and hydrophobic segments leads to nanophase‐segregation exhibited as the formation of aggregates (e.g., vesicles, worms, and/or micelles). By employing both stereochemical configurations of PLA, the differentiation in mass ratios of PLA‐PAMAM aided in elucidating the structure–property relationships of the LDBC system and provided a means toward the control of nanoparticle morphology. Transmission electron microscopy and dynamic light scattering afford the size and shape of the nanoparticles with diameters ranging from 10.6 for low mass ratios to 122.4 nm for high mass ratios of PLA‐PAMAM and positive zeta‐potential values between +24.7 mV and +48.2 mV. Furthermore, small‐angle X‐ray scattering (SAXS) studies were employed to obtain more detailed information on the morphological assemblies constructed via direct dissolution. Such insights provide a pathway toward nanomaterials with unique morphologies and tunable properties deemed relevant in the development of next generation biomaterials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1448–1459 相似文献
16.
Zhifeng Jia Yongfeng Zhou Deyue Yan 《Journal of polymer science. Part A, Polymer chemistry》2005,43(24):6534-6544
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005 相似文献
17.
Hui‐Chao Lu Yang Xue Qiao‐Ling Zhao Jin Huang Shen‐Gang Xu Shao‐Kui Cao Zhi Ma 《Journal of polymer science. Part A, Polymer chemistry》2012,50(17):3641-3647
Well‐defined amphiphilic polymethylene‐b‐poly (acrylicacid) diblock copolymers have been synthesized via a new strategy combining polyhomologation and atom transfer radical polymerization (ATRP). Hydroxyl‐terminated polymethylenes (PM‐OH) with different molecular weights and narrow molecular weight distribution are obtained through the polyhomologation of dimethylsulfoxonium methylides following quantitative oxidation via trimethylamine‐N‐oxide dihydrate. Subsequently, polymethylene‐based macroinitiators (PM‐MIs Mn = 1,300 g mol?1 [Mw/Mn = 1.11] and Mn = 3,300 g mol?1 [Mw/Mn = 1.04]) are synthesized by transformation of terminal hydroxyl group of PM‐OH to α‐haloester in ~100% conversion. ATRPs of tert‐butyl acrylate (t‐BuA) are then carried out using PM‐MIs as initiator to construct PM‐b‐P(t‐BuA) diblock copolymers with controllable molecular weight (Mn = 8,800–15,800 g mol?1 Mw/Mn = 1.04–1.09) and different weight ratio of PM/P(t‐BuA) segment (1:1.7–1:11.2). The amphiphilic PM‐b‐PAA diblock copolymers are finally prepared by hydrolysis of PM‐b‐P(t‐BuA) copolymers and their self‐assembly behavior in water is preliminarily investigated via the determination of critical micelle concentrations, dynamic light scattering, and transmission electron microscope (TEM). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
18.
Sarah L. Goh Andrew P. Platt Katherine E. Rutledge Iris Lee 《Journal of polymer science. Part A, Polymer chemistry》2008,46(16):5381-5389
The solubility nature of many medicines presents a challenge for successful delivery of these drugs to the body. Polymeric carriers are potentially viable as vessels for both the protection and transport of these medicinal substances. In an effort to generate polymeric materials for this desired application, A‐B‐A triblock copolymers have been synthesized with a central block composed of hydrophilic poly (ethylene glycol) (PEG) and flanking hydrophobic sequences composed of five valine units terminated with end groups of varying hydrophobicity. These copolymers were constructed by adding amino acids stepwise to the hydrophilic block using solution phase chemistry. The self‐assembly behavior of all polymers was investigated using fluorimetry with a pyrene probe. In general, copolymers with more hydrophobic end groups exhibited lower critical aggregation concentrations (CACs). Fmoc‐terminated copolymers displayed the lowest CAC of 0.032 mg/mL and demonstrated little cytotoxicity when exposed to SW620 colorectal cancer cells. Transmission electron micrographs show the presence of multiple compartments within these spherical assemblies, which may prove useful in encapsulating medicinal substances. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5381–5389, 2008 相似文献
19.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(3):300-308
Four generations of new amphiphilic thermoresponsive linear‐dendritic block copolymers (LDBCs) with a linear poly(N‐vinylcaprolactam) (PNVCL) block and a dendritic poly(benzyl ether) block are synthesized by atom transfer radical polymerization (ATRP) of N‐vinylcaprolactam (NVCL) using dendritic poly(benzyl ether) chlorides as initiators. The copolymers have been characterized by 1H NMR, FTIR, and GPC showing controlled molecular weight and narrow molecular weight distribution (PDI ≤ 1.25). Their self‐organization in aqueous media and thermoresponsive property are highly dependent on the generation of dendritic poly(benzyl ether) block. It is observed for the LDBCs that the self‐assembled morphology changes from irregularly spherical micelles, vesicles, rod‐like large compound vesicles (LCVs), to the coexistence of spherical micelles and rod‐like LCVs, as the generation of the dendritic poly(benzyl ether) increases. The results of a cytotoxicity study using an MTT assay method with L929 cells show that the LDBCs are biocompatible. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 300–308 相似文献
20.
Mathias Glassner Kathleen Lava Victor R. de la Rosa Richard Hoogenboom 《Journal of polymer science. Part A, Polymer chemistry》2014,52(21):3118-3122
Poly(2‐propyl‐oxazoline)s can be prepared by living cationic ring‐opening polymerization of 2‐oxazolines and represent an emerging class of biocompatible polymers exhibiting a lower critical solution temperature in aqueous solution close to body temperature. However, their usability is limited by the irreversibility of the transition due to isothermal crystallization in case of poly(2‐isopropyl‐2‐oxazoline) and the rather low glass transition temperatures (Tg < 45 °C) of poly(2‐n‐propyl‐2‐oxazoline)‐based polymers. The copolymerization of 2‐cyclopropyl‐2‐oxazoline and 2‐ethyl‐2‐oxazoline presented herein yields gradient copolymers whose cloud point temperatures can be accurately tuned over a broad temperature range by simple variation of the composition. Surprisingly, all copolymers reveal lower Tgs than the corresponding homopolymers ascribed to suppression of interchain interactions. However, it is noteworthy that the copolymers still have Tgs > 45 °C, enabling convenient storage in the fridge for future biomedical formulations. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3118–3122 相似文献