首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Films were prepared via solvent casting from different deacetylated and depolymerized chitosans obtained from β‐chitin. The linear viscoelastic behavior of the chitosan films was studied with uniaxial tensile stress–relaxation tests. All stress–relaxation profiles exhibited an asymptotically decaying trend, with a residual value different from zero, thus pointing out a solid‐like, viscoelastic behavior. The decay of the tensile modulus with time was phenomenologically described by a generalized Maxwell model consisting of three exponential functions and an equilibrium elastic modulus. Films prepared from chitosans with higher molecular weights showed higher residual elastic moduli and longer relaxation times. Within the range of the degrees of acetylation analyzed (0–27%), chitosans with the lowest and highest degrees of acetylation exhibited more pronounced solid‐like character. This behavior is explained on the basis of a complex balance between steric effects, types of intermolecular interactions, and aggregation of the chitosan samples. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1907–1915, 2007  相似文献   

2.
Chitosan gel beads were prepared using an in‐liquid curing method by the ionotropic crosslinking with sodium tripolyphosphate. Crosslinking characteristics of the chitosan‐TPP beads were improved by the modification of in‐liquid curing mechanism of the beads in TPP solution. Chitosan gel beads cured in pH value lower than 6 were really ionic‐crosslinking controlled, whereas chitosan gel beads cured in pH values higher than 7 were coacervation‐phase inversion controlled accompanied with slightly ionic‐crosslinking dependence. According to the result, significantly increasing the ionic‐crosslinking density of chitosan beads could be achieved by transferring the pH value of the curing agent, TPP, from basic to acidic. The swelling behavior of various chitosan beads in acid appeared to depend on the ionic‐crosslinking density of the chitosan‐TPP beads that were deeply affected by the curing mechanism of the beads. The mechanism of chitosan‐TPP beads swollen in weak acid was chain‐relaxation controlled, while the mechanism of chitosan‐TPP beads swollen in strong acid seem to be not only chain‐relaxation but also chain‐scission controlled. Chitosan‐TPP beads prepared in acidic TPP solution decreased the chain‐scission ability due to the increase of ionic crosslinking density of the beads. By the transition of curing mechanism, the swelling degree of chitosan‐TPP beads was depressed, and the disintegration of chitosan‐TPP beads would not occur in strong acid. The mechanism of ionic‐crosslinking reaction of chitosan beads could be investigated by an unreacted core model, and the curing mechanism of the chitosan beads is mainly diffusion controlled when higher than 5% of chitosan was employed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1551–1564, 1999  相似文献   

3.
The effect of network formation on the secondary (Johari–Goldstein) β‐relaxation was investigated for polyvinylethylene (PVE). Crosslinking affects the segmental (α‐) process in the usual fashion, the networks exhibiting slower and more temperature‐sensitive dynamics. However, the effect on the β‐process is the opposite. The secondary relaxation becomes faster and the activation energy slightly decreases with crosslinking. The strength of the intermolecular cooperativity governing the behavior of the α‐process was assessed using the coupling model, with consistent results obtained from analysis of both the timescale separating the α‐ and β‐relaxations and the activation energy for the latter. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 582–587, 2010  相似文献   

4.
Preparation of solution‐processed perfluorosulfonate ionomer membranes containing both small alkali metal and large alkylammonium counterions has been shown to have a profound impact on the mechanical and transport properties of the resulting acidified ionomer. The use of mixed counterions is shown to be an effective means of tailoring the thermomechanical properties of the membrane as evidenced by compositionally dependent relaxations in dynamic mechanical analysis. In agreement with our recent assignments, the α‐relaxation is found to be systematically dependent on the strength of electrostatic interactions, whereas the Tg of Nafion® (i.e., the β‐relaxation) is susceptible to plasticization. Investigations of ionic aggregation using solid‐state 23Na NMR and small‐angle X‐ray scattering provided information suggesting the presence of mixed aggregates containing populations of both sodium and tetrabutylammonium ions. In contrast to the general perception that proton conductivity tracks with water content, membranes prepared at a 50:50 sodium/tetrabutylammonium counterion composition, followed by conversion to the H+‐form, showed a minimum in water content yet relatively high proton conductivity. This behavior suggests that specific interactions during processing affect the organization of the ionic domains and yield persistent structures that can significantly influence membrane transport properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2267–2277, 2006  相似文献   

5.
用1HNMR方法测定了交联度分别为10%,7.5%,5%,25%,1%,0.5%及0.25%的丙烯酰胺-丙烯酸与N,N’-亚甲基双丙烯酰胺交联共聚水凝胶中水及主链质子的化学位移谱及自旋晶格弛豫时间T1,并用BBP模型进行了讨论。结果表明,水和凝胶主链的质子线宽随交联度加大而明显增宽,只有在低交联度下,由空间立规度造成的精细分裂才能呈现出来;水凝胶体系中水自旋晶格弛豫时间T1随交联度加大而非单调地减小,寓示凝胶内部有较强的键合束缚水存在,并满足双相快交换模型。聚合物主链质子T1与水质子的T1弛豫行为相反,随交联度加大主链运动受限加强而使其运动减慢,反映了聚合物主链的大分子运动特征,发现主链(-CH-)与(-CH2-)质子T1之比可表征凝胶内部分子链运动的强弱;讨论了NMR弛豫与凝胶孔径结构的关联。  相似文献   

6.
In this work thermal relaxations of chitosan are reported by using a novel methodology that includes subtraction of the dc conductivity contribution, the exclusion of contact and interfacial polarization effects, and obtaining a condition of minimum moisture content. When all these aspects are taken into account, two relaxations are clearly revealed in the low frequency side of the impedance data. We focus on the molecular motions in neutralized and non‐neutralized chitosan analyzed by dielectric spectroscopy in the temperature range from 25 to 250 °C. Low and high frequency relaxations were fitted with the Havriliak and Negami model in the 10?1 to 108 Hz frequency range. For the first time, the low frequency α‐relaxation associated with the glass‐rubber transition has been detected by this technique in both chitosan forms for moisture contents in the range 0.05 to 3 wt % (ca. 18–62 °C). A strong plasticizing effect of water on this primary α‐relaxation is observed by dielectric spectroscopy and is supported by dynamic mechanical analysis measurements. In the absence of water (<0.05 wt %) the α‐relaxation is obscured in the 20–70 °C temperature range by a superposition of two low frequency relaxation processes. The activation energy for the σ‐relaxation is about 80.0–89.0 kJ/mol and for β‐relaxation is about 46.0–48.5 kJ/mol and those values are in agreement with that previously reported by other authors. The non‐neutralized chitosan possess higher ion mobility than the neutralized one as determined by the frequency location of the σ‐relaxation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2259–2271, 2009  相似文献   

7.
Acoustical and molecular dynamics studies were carried out to understand the various interactions present in glycylglycine?CCuCl2 aqueous solutions. Amongst these interactions, hydrogen bonding and solute?Csolvent interactions have been highlighted in this study. The radial distribution function (RDF) was used to investigate solution structure and hydration parameters. Binding of Cu2+ with various polar peptide atoms reveals the nature and degree of binding. The formation of complex clusters between glycylglycine and water molecules increases the relaxation time. The first hydration shell considerably influences the structure of the second shell, facilitating the formation of an ordered hydrogen bonded network. Both experimental and theoretical results have proved to be efficient in analyzing the behavior of molecules and to give a clear idea on molecular interactions in solutions.  相似文献   

8.
Novel polystyrene nanoparticles were synthesized by the controlled intramolecular crosslinking of linear polymer chains to produce well‐defined single‐molecule nanoparticles of varying molecular mass, corresponding directly to the original linear precursor chain. These nanoparticles are ideal to study the relaxation dynamics/processes of high molecular mass polymer melts, as the high degree of intramolecular crosslinking potentially inhibits entanglements. Both the nanoparticles and their linear analogs were characterized by measuring their intrinsic viscosity, hydrodynamic radius (Rh), and radius of gyration (Rg). The ratio Rg/Rh was computed to characterize the molecular architecture of the nanoparticles in solution, revealing a shift toward the constant density sphere limit with increasing crosslink density and molecular mass. Further, confirming particulate behavior, Kratky plots obtained from neutron scattering data show a shift toward particle‐like nature. The rheological behavior of the particles was found to be strongly dependent on both the extent of intramolecular crosslinking and molecular mass, with a minimal viscosity change at low crosslinking levels and a gel‐like behavior evident for a large degree of crosslinking. These and other results suggest the presence of a secondary mode of polymer relaxation/movement besides reptation, which in this case, is influenced by the total number of crosslinked loops present in the nanoparticle. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1930–1947, 2006  相似文献   

9.
Amorphous polymers exhibit a primary (glass, or α‐) relaxation process and a low‐temperature relaxation process associated with polymer backbone motion usually referred to as the β‐relaxation process. The latter process can be observed below the glass transition temperature of the polymer and usually merges with the α‐relaxation process at temperatures somewhat above the glass transition temperature. While it is widely held that both the α‐relaxation and β‐relaxation processes are engendered by localized (segmental) motions of the polymer backbone, and that there is a strong mechanistic connection between them, the molecular mechanisms of the α‐relaxation and β‐relaxation processes in amorphous polymers are not well understood. Recently, atomistic molecular dynamics simulations of melts and blends of 1,4‐polybutadiene have provided insight into the relationship between the α‐ and β‐relaxation processes in glass‐forming polymers and an improved understanding of their molecular origins. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 627–643, 2007  相似文献   

10.
Mechanical and dielectric properties of two series of segmented polyurethanes having soft segment concentration of 50 and 70% and a varying degree of crosslinking through the hard segment were studied. The degree of crosslinking in each series was varied by varying the butane diol/trimethylol propane ratio in the chain extender mixture. Tensile strength, elongation at break decrease, but elastic recovery increases monotonically with increasing crosslinking. The plateau modulus in the dynamic mechanical test decreases and then increases with increasing TMP content. Crosslinking causes broadening of the soft segment glass transition as seen by permittivity and loss factor measurements. It also affects high temperature behavior (above the glass transition of the hard segment); it lowers permittivity, loss factor, and ionic conductivity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 237–251, 1998  相似文献   

11.
Hydroxyethyl chitosan and hydroxypropyl chitosan were prepared through the reaction of alkali‐chitosan with 2‐chloroethanol and propylene epoxide, respectively. Fourier transform infrared and 13C NMR measurements were made to examine the substitution on the chitosan unit. According to a comparison of the peak areas between the modified chitosan and unmodified chitosan and the integration of peak areas of 1H NMR spectra, for both modified chitosans, the maximum degree of substitution was less than 25%. The ionic conductivity and mechanical properties of modified chitosan membranes were investigated. In comparison with the unmodified chitosan membrane, hydrated hydroxyethyl and hydroxypropyl chitosan membranes with a higher degree of substitution showed an increase in ionic conductivity of about one order of magnitude; moreover, the crystallinity of hydroxyethyl and hydroxypropyl chitosan membranes was remarkably reduced, and their swelling indices increased significantly. However, these modified membranes did not exhibit significant changes in their tensile strength and breaking elongation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1379–1397, 2004  相似文献   

12.
The authors investigate the dynamics of a series of room temperature ionic liquids, based on the same 1-butyl-3-methylimidazolium cation with different anions, by means of broadband (10(-6)-10(9) Hz) dielectric spectroscopy and depolarized light scattering in the temperature range from 400 K down to 35 K. Typical ionic conductivity is observed above the glass transition temperature Tg. Below Tg the authors detect relaxation processes that exhibit characteristics of secondary relaxations, as typically observed in molecular glasses. At high temperatures, the characteristic times of cation reorientation, deduced from the light scattering data, are approximately equal to the electric modulus relaxation times related to ionic conductivity. In the supercooled regime and close to Tg, the authors observe decoupling of conductivity from structural relaxation. Overall, room temperature ionic liquids exhibit typical glass transition dynamics, apparently unaltered by Coulomb interactions.  相似文献   

13.
The oxidation and hydration kinetics of a proton conductor oxide, SrCe(0.95)Yb(0.05)O(2.975), were examined via conductivity relaxation upon a sudden change of oxygen activity in a fixed water-activity atmosphere, and vice versa, in the ranges of -4.0 < log a(O(2)) < or = 0.01 and -5.0 < log a(H(2)O) < -2.0 at 800 degrees C. It was found that under an oxygen-activity gradient in a fixed water-vapor-activity atmosphere, the conductivity relaxation with time is monotonic with a single relaxation time (as usual), yielding a chemical diffusivity that is unequivocally that of the component oxygen. In a water-activity gradient in a fixed oxygen activity atmosphere, on the other hand, the conductivity relaxation appears quite unusual, exhibiting an extremum after an initial transient. The conductivity relaxation upon hydration or oxidation, in general, is quantitatively analyzed in terms of two apparent chemical diffusivities for component oxygen and hydrogen, respectively. The inner workings of hydration is discussed, and the as-evaluated chemical diffusivities are reported and compared with the conventional chemical diffusivity of water.  相似文献   

14.
A series of DABCO‐functionalized polysulfones were synthesized and characterized. The effect that crosslinking has on the membrane properties containing different degrees of functionalization was evaluated. These polymers showed good thermal stability below the fuel cell operation temperature, T < 100 °C, reflected by the TOD, TFD, and thermal durability. The water uptake increased as the percentage of DABCO groups increased and the crosslinked membranes showed lower capacity to absorb water than the non‐crosslinked ones favoring thus the dimensional stability of the first ones. Membranes in the chloride form containing low degree of functionalization exhibited the highest tensile strength values. The ionic conductivity of non‐crosslinked membranes varied as a function of the functionalization degree until a value of around 100% achieving a maximum value at 86%. However, the crosslinked ones showed satisfactory ionic conductivities for values higher than 100%. The behavior of these polymeric materials in alkaline solutions revealed a great alkaline stability necessary to be used as solid electrolytes in fuel cells. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1326–1336  相似文献   

15.
We report here a broadband dielectric spectroscopy study on an ionic liquid microemulsion (ILM) composed of water, Triton X-100 (TX-100), and 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF(6)). It is found that the phase behavior of this ILM can be easily identified by its dielectric response. The dielectric behavior of the ILM in the GHz range is consistent with that of TX-100∕water mixtures with comparable water-to-TX-100 weight ratio. It consists of the relaxations due to ethylene oxide (EO) unit relaxation, hydration water dynamics, and∕or free water dynamics. The water content dependence of the EO unit relaxation suggests that this relaxation involves dynamics of hydration water molecules. In the IL-in-water microemulsion phase, it is found that bmimPF(6) molecules are preferentially dissolved in water when their concentration in water is lower than the solubility. An additional dielectric relaxation that is absent in the TX-100∕water mixtures is observed in the frequency range of 10(7)-10(8) Hz for this ILM. This low-frequency relaxation is found closely related to the bmimPF(6) molecule and could be attributed to the hopping of its cations∕anions between the anionic∕cationic sites.  相似文献   

16.
We report experimental and theoretical studies on water and protein dynamics following photoexcitation of apomyoglobin. Using site-directed mutation and with femtosecond resolution, we experimentally observed relaxation dynamics with a biphasic distribution of time scales, 5 and 87 ps, around the site Trp7. Theoretical studies using both linear response and direct nonequilibrium molecular dynamics (MD) calculations reproduced the biphasic behavior. Further constrained MD simulations with either frozen protein or frozen water revealed the molecular mechanism of slow hydration processes and elucidated the role of protein fluctuations. Observation of slow water dynamics in MD simulations requires protein flexibility, regardless of whether the slow Stokes shift component results from the water or protein contribution. The initial dynamics in a few picoseconds represents fast local motions such as reorientations and translations of hydrating water molecules, followed by slow relaxation involving strongly coupled water-protein motions. We observed a transition from one isomeric protein configuration to another after 10 ns during our 30 ns ground-state simulation. For one isomer, the surface hydration energy dominates the slow component of the total relaxation energy. For the other isomer, the slow component is dominated by protein interactions with the chromophore. In both cases, coupled water-protein motion is shown to be necessary for observation of the slow dynamics. Such biologically important water-protein motions occur on tens of picoseconds. One significant discrepancy exists between theory and experiment, the large inertial relaxation predicted by simulations but clearly absent in experiment. Further improvements required in the theoretical model are discussed.  相似文献   

17.
We study by molecular dynamics simulations the hydration of -cyclodextrin. Our simulations show that within these barrel-shaped molecules hydrophobicity dominates, while at the top and bottom sides of the barrel interactions with water are mostly hydrophilic in nature. These results agree with crystallographic data at 120 K and, in particular, with the spontaneous hydration process of a cyclodextrin crystal in wet atmosphere. The predicted structure of the hydration shells is discussed and compared with previous molecular mechanics calculations which report an overall hydrophobic behavior. Moreover, the temperature dependence of the hydration process is discussed.  相似文献   

18.
The electrochemical properties of a perfluorosulfonic acid (PFSA) membrane are estimated using a combination of molecular dynamics simulation and statistical thermodynamic model. We obtain all parameters in an ionic conductivity model from an atomistic simulation and remove all adjusted model parameters. From a microscopic point of view, the hydrated PFSA membrane shows micro‐phase segregation which separated into hydrophilic and hydrophobic phases. Our present work originates with this phenomenon and we treat this phase segregation as if it is a continuous phase for each of which the proton (H+) is transported inside the PFSA membrane/solvent (water and alcohols) mixture. The chemical potential for a given system is estimated using a molecular simulation technique to predict the van der Waals interaction energy between the polymer and solvent. In addition, the self diffusion coefficients are calculated from the molecular dynamics simulation. We study various polymer/solvent compositions to understand the concentration dependence of self diffusion coefficient. Our self diffusion coefficients and also the predicted final ionic conductivity agree well with previously reported experimental data. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1455–1463, 2011  相似文献   

19.
This work investigates the influence of the hydration level on the molecular mobility and glass transition dynamics of freestanding chitosan/alginate (CHT/ALG) nanolayered systems. Nonconventional dynamic mechanical analysis identifies two relaxation processes assigned to the α‐relaxation of the two biopolymers, respectively, CHT and ALG, when immersed in water/ethanol mixtures. This phenomenon explains the shape memory properties of the multilayered systems induced by hydration, thus constituting promising smart materials that would be of paramount importance in a plethora of research fields, including in the biomedical and biotechnological fields.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号