共查询到20条相似文献,搜索用时 15 毫秒
1.
Fukuji Higashi Masao Komatsu Junko Takizawa 《Journal of polymer science. Part A, Polymer chemistry》2002,40(11):1775-1780
A thermotropic copoly(amide ester) exhibiting a nematic mesophase within the range of 240–360 °C was prepared by the solution copolycondensation of p‐aminobenzoic acid (40–70 mol %) and m‐hydroxybenzoic acid with diphenyl chlorophosphate in pyridine in the presence of LiCl. For control of the sequence distribution of p‐aminobenzoic acid, the amount of LiCl and the dropwise addition of the phosphate were examined. The transition temperatures (from a solid phase to a nematic mesophase) of the resultant copolymers were affected by the period of addition and the amounts of the aminobenzoic acid and LiCl and were investigated in terms of the distributions of the monomers determined by 1H NMR. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1775–1780, 2002 相似文献
2.
《中国化学会会志》2018,65(9):1127-1135
In this paper, a WS2 nanosheet was modified on the surface of a carbon ionic liquid electrode (CILE), and horseradish peroxidase (HRP) was further fixed on the electrode with a Nafion film. Direct electrochemistry and bioelectrocatalysis of HRP incorporated on the modified electrode were investigated in detail. On Nafion/HRP/WS2/CILE, a pair of well‐defined quasi‐reversible redox peaks appeared on the cyclic voltammogram, indicating that the presence of the WS2 nanosheet on the electrode surface could provide a specific interface with large surface area for HRP and its direct electron transfer rate was greatly enhanced. The formal potential (E0) obtained was –0.179 V, which was the typical feature of heme Fe(III)/Fe(II) in HRP. The electron transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) of HRP were calculated as 0.44 and 1.01 s–1, respectively. This HRP‐modified electrode showed excellent electrocatalytic activity for the reduction of trichloroacetic acid and NaNO2 with a wide linear range and low detection limit. Real samples were detected by this proposed method, indicating the successful fabrication of a new third‐generation electrochemical enzyme sensor utilizing the WS2 nanosheet. 相似文献
3.
Enzymatic oxidative polymerization of para‐imine functionalized phenol catalyzed by horseradish peroxidase 下载免费PDF全文
Enzymatic oxidative polymerization of a new para‐imine functionalized phenol derivative, 4‐(4‐hydroxybenzylideneamino)benzoic acid (HBBA), using horseradish peroxidase enzyme and hydrogen peroxide oxidizer has been investigated in an equivolume mixture of an organic solvent (acetone, methanol, ethanol, dimethylformamide, 1,4‐dioxane, and tetrahydrofuran) and phosphate buffer (pH = 5.0, 6.0, 6.8, 7.0, 7.2, 8.0, and 9.0) at different temperatures under air for 24 h. The resulting oligomer, oligo(4‐(4‐hydroxybenzylideneamino)benzoic acid) [oligo(HBBA)], was characterized using ultraviolet–visible, Fourier transform infrared (FT‐IR), 1H nuclear magnetic resonance (NMR), cyclic voltammetry, size exclusion chromatography, differential scanning calorimetry, and thermogravimetric analyses. Polymerization involved carbon dioxide and hydrogen elimination from the monomer, and terminal units of the oligomer structure consisted of phenolic hydroxyl (–OH) groups at the ends. The polymer is mainly composed of a mixture of phenylene and oxyphenylene units according to 1H NMR and FT‐IR analyses. Effects of solvent system, temperature and buffer pH on the polymerization have been investigated in respect to the yield and molecular weight (Mn) of the product. The best condition in terms of the highest molecular weight (Mn = 3000 g/mol, DP ~ 15) was achieved in an equivolume mixture of 1,4‐dioxane/pH 5.0 phosphate buffer condition at 35°C. Electrochemical characterization of oligo(HBBA) was investigated at different scan rates. The resulting oligomer has also shown relatively high thermal stability according to thermogravimetric analysis. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
M. A. Orlova E. A. Mareeva V. V. Doseeva Yu. L. Kapeliukh A. A. Shevchenko I. G. Gazaryan O. A. Kost 《Russian Chemical Bulletin》1995,44(1):172-175
The inactivation of native and recombinant horseradish peroxidase in the presence of hydrogen peroxide and under ionizing radiation was studied. The types of peroxidase activity differ in sensitivity towards the inactivating effect of H2O2: the activity in relation to the iodide ion is more stable than the activity in relation to ammonium 2,2-azinobis(3ethylbenzothiazoline-6-sulfonate) (ABTS) ando-phenylenediamine. Similar inactivation was observed in the course of the radiolysis of peroxidase. It was assumed that the initial period of peroxidase inactivation in the presence of hydrogen peroxide has a radical nature and is related to the generation of Superoxide radicals, which modify the protein moiety, resulting in the destruction of heme. The R-670 compound was not formed under the conditions studied. However, the E EI transition occurred, depending on the radiation dose and the enzyme concentration.Translated fromIzyestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 176–179, January, 1995. 相似文献
5.
LC/MS3‐Guided biotransformation of p‐coumaric acid (=(2E)‐3‐(4‐hydroxyphenyl)prop‐2‐enoic acid; CA) with H2O2/Momordica charantia peroxidase at pH 5.0 and 45° in the presence of acetone has resulted in the isolation of three CA trimers, triCA1 ( 1 ), triCA2 (trans‐ 2 ), and triCA3 (cis‐ 2 ), and seven CA dimers, diCA1–diCA7, i.e., 3 – 9 , among which seven (triCA1–triCA3 and diCA1–diCA4) are new compounds and three (diCA5–diCA7) are known compounds. The structures were established by 2D‐NMR such as HSQC, HMBC, and NOESY measurements. The possible mechanism for the formation of the products is also discussed (Schemes 1–3). This is the first time that the biotansformation of p‐coumaric acid catalyzed by peroxidase in vitro was achieved. Compounds triCA3 (cis‐ 2 ), diCA1 ( 3 ), diCA5 ( 7 ), and diCA7 ( 9 ) exhibit a stronger antioxidative activity than the parent CA. 相似文献
6.
Kunio Kimura Kazufumi Kobashi Hitoshi Maeda Yuhiko Yamashita 《Macromolecular rapid communications》2003,24(2):190-193
The dual self‐assembling polycondensation of p‐acetoxybenzoic acid (ABA) and p‐acetamidobenzoic acid in Therm S 800 was examined at 300 °C. Needle‐like crystals and lath‐like crystals were formed simultaneously through reaction‐induced crystallization of oligomers at a molar ratio of 30–50 mol‐% ABA in the feed. The needle‐like crystals comprised more p‐oxybenzoyl units, whereas the lath‐like ones contained higher amounts of p‐benzamide moieties.
7.
Eui‐Jun Choi Chang‐Hyeon Kim Jung‐Ki Park 《Journal of Polymer Science.Polymer Physics》1999,37(17):2430-2438
The polycaprolactone (PCL)/starch blends were prepared by using the starch‐g‐PCL (SGCL) graft copolymers as compatibilizers, and their mechanical properties were correlated with the compatibilizing effect of the SGCL copolymers having various molecular structures. The modulus and strength of the PCL/starch blend were decreased, whereas the percent elongation and the toughness were increased remarkably with the addition of SGCL having appropriate graft structure. These property changes were analyzed in terms of the PCL crystallinity and the interfacial adhesion between the PCL matrix and starch dispersion phases, which were dominated by the compatibilizing effects of the SGCL copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2430–2438, 1999 相似文献
8.
The third generation amperometric biosensor for the determination of hydrogen peroxide (H2O2) has been described. For the fabrication of biosensor, o-aminobenzoic acid (oABA) was first electropolymerized on the surface of platinum (Pt) electrode as an electrostatic repulsion layer to reject interferences. Horseradish peroxidase (HRP) absorbed by nano-scaled particulate gold (nano-Au) was immobilized on the electrode modified with polymerized o-aminobenzoic acid (poABA) with L-cysteine as a linker to prepare a biosensor for the detection of H2O2. Amperometric detection of H2O2 was realized at a potential of +20 mV versus SCE. The resulting biosensor exhibited fast response, excellent reproducibility and sensibility, expanded linear range and low interferences. Temperature and pH dependence and stability of the sensor were investigated. The optimal sensor gave a linear response in the range of 2.99×10^-6 to 3.55×10^-3 mol·L^-1 to H2O2 with a sensibility of 0.0177 A·L^-1·mol^-1 and a detection limit (S/N = 3) of 4.3×10^-7 mol·L^-1. The biosensor demonstrated a 95% response within less than 10 s. 相似文献
9.
J. G. Gazaryan V. V. Doseeva A. G. Galkin V. I. Tishkov E. A. Mareeva M. A. Orlova 《Russian Chemical Bulletin》1995,44(2):363-366
The F143E mutant form of the recombinant horseradish peroxidase was reactivated fromE. coli inclusion bodies. The mutation inhibits heme entrapment and results in a decrease in the catalytic activity, mainly affecting the stage of the oxidation of a donor substrate (ABTS, iodide). An increase in stability of the mutant form obtained under radiation inactivation over that of the wild-type recombinant enzyme was observed. The data obtained confirms the proposed location of Phel43 at the entrance of the active center, hence its replacement by the negatively charged glutamic acid residue retards heme entrapment and substrate binding, thus protecting the active center of the enzyme against the radicals generated by radiolysis.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 371–374, February, 1995. 相似文献
10.
Four hydroxybenzoic acid building blocks,m-hydroxybenzoic acid,2,4-dihydroxybenzoic acid,2,5-dihydroxyterephthalic acid,and 5-hydroxyisophthalic acid,have been synthesized as robust cocrystallizing agents and employed in reactions with piperazine,including [(C4H12N22+).(C7H5O3)2 ](1),[(C4H12N22+).(C 7H5O4)2 ](2),[(C4H12N22+).(C8H5O62)](3),and [(C4H12N22+)1/2.(C8H5O5)].2H2O(4).Hydrogen-bonded directed assemblies of four salts were validated by single-crystal X-ray diffraction analysis.In compounds 1-4,hydroxybenzoic acids are all deprotonated and piperazine molecules are all protonated to form piperazine dications and keep the chair conformation.Thermal stability of these compounds has been investigated. 相似文献
11.
Uric acid (UA) is determined using the UV-vis molecular absorption properties of peroxidase (HRP). The method as a whole involves UA oxidation in the presence of uricase (UOx), giving H2O2. The H2O2 then reacts with HRP forming the compound I species which returns to its initial form by reaction with UA and intramolecular reduction. The molecular absorption changes of HRP at 420 nm during the reaction enable the UA to be determined. A mathematical model relating the analytical signal to UA, UOx and HRP has been developed and experimentally validated. The possibility of carrying out both enzymatic reactions sequentially or simultaneously is discussed, the latter option producing better analytical performances. The method permits UA determination in the range 1.5 × 10−6-4.0 × 10−5 M, with an R.S.D. of about 3% (n = 5, 1.5 × 10−6 M UA). It has been applied to analyte determination in synthetic serum samples. 相似文献
12.
《Journal of separation science》2003,26(18):1701-1706
Countercurrent chromatography (CCC) purification of horseradish peroxidase (HRP) from Armoracia rusticana root extracts was achieved by employing polymer‐phosphate aqueous two‐phase systems (ATPS). By using preparative columns at 1000 rpm, a 25–30% retention of the top phase of an ATPS composed of 10% w/w PEG 1540 and 14.8% w/w phosphate – with added 2 mol/kg sodium chloride – was obtained. The retention level was stable during the standard separation running time (4 h). Horseradish root extract samples were injected into the system (10–25 mL; 200–250 U/mL peroxidase; 2.0–4.0 mg/mL total protein). Retention of HRP in the CCC “column” during the chromatographic run was attained in the selected ATPS, where the partition coefficient K for the enzyme was ≥ 8. Replacement of the mobile phase with a fresh one but in the absence of added salt brought about product elution. Recovery of HRP in this fraction accounts for ≥ 45% of the total activity loaded, with a purification factor of 6. Enzyme activity was also found in the pass‐through fraction and in the remaining liquid (stationary) phase, a fact that should be ascribed to the existence of multiple peroxidase isoforms. SDS‐PAGE of the active fraction showed a protein band at 44 kDa, compatible with the presence of HRP. Thus, the optimised CCC system allowed the separation of HRP directly from a complex biological material. These results open up the possibility of achieving protein separation with CCC/ATPS and of scaling‐up processes in industrial separators. 相似文献
13.
Masahiro Kihara Shin‐Ichiro Kohama Shota Umezono Kanji Wakabayashi Shinichi Yamazaki Kunio Kimura 《Journal of polymer science. Part A, Polymer chemistry》2011,49(5):1088-1096
Poly(p‐oxybenzoyl) (POB) crystals were prepared by reaction‐induced crystallization during direct polymerization of p‐hydroxybenzoic acid in the presence of boronic anhydrides. Polymerizations were carried out at 300 °C in dibenzyltoluene at a concentration of 1% with three kinds of anhydrides of boronic acid such as 3,4,5‐trifluorophenylboronic acid (TFB), 4‐methoxyphenylboronic acid (MPB) and 4‐biphenylboronic acid (BPB). The POB crystals were formed as precipitates in the solution and the morphology was considerably influenced by both the structure of the boronic anhydride and its concentration (cB). Needle‐like crystals were firmed in the presence of TFB anhydride (TFBA) at cBs of 5 and 10 mol % by the spiral growth of lamellae. Spherical aggregates of slab‐like crystals were formed at cBs from 50 to 100 mol %. The polymerization with MPB anhydride and BPB anhydride (BPBA) also yielded the needle‐like crystals at cBs of 50 and 5 mol %, respectively. The polymerization with TFBA at lower cB was favorable to prepare the needle‐like crystal. Molecular weight was also influenced by the structure of the boronic anhydride and cB. Mn increased generally with cB and BPBA gave the highest Mn of 14.7 × 103 at cB of 100 mol %. The loose packing of the molecules in the crystal caused by the bulkiness of the end‐groups made the polymerization in the crystals more efficiently. Morphology and molecular weight of the POB crystals could be controlled by the chemical structure and the content of boronic anhydride. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011. 相似文献
14.
M. A. Orlova E. A. Mareeva V. V. Doseeva I. G. Gazaryan 《Russian Chemical Bulletin》1994,43(12):2110-2113
Comparative studies of the inactivation of native and recombinant horseradish peroxidase in the course of an enzymatic reaction, at elevated temperatures and in a wide range of radiation doses, have been performed. The protective effect of the carbohydrate component of the native peroxidase providing for stabilization of the enzyme against various inactivating factors was demonstrated. It was proposed that radioactive inactivation is related to dysfunction in heme interaction with the protein component and to an increase in the conformational mobility around the active site of the enzyme.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2230–2233, December, 1994. 相似文献
15.
A novel application of horseradish peroxidase (HRP) in the oxidation of alcohol ethoxylate to alkylether carboxylic acid in the present of H2O2 was reported in this paper. We propose the mechanism for the catalytic oxidation reaction is that the hydrogen transfers from the substrate to the ferryl oxygen to form the α-hydroxy carbon radical intermediate. The reaction offers a new approach for further research structure and catalytic mechanism of HRP and production of alkylether carboxylic acid. 相似文献
16.
M. García J. I. Eguiazbal J. Nazbal 《Journal of Polymer Science.Polymer Physics》2003,41(10):1022-1032
Injection‐molded blends composed of two liquid‐crystalline polymers (LCPs) based on 60/40 p‐hydroxybenzoic acid/ethylene terephthalate (R3) and 73/27 p‐hydroxybenzoic acid/2,6‐hydroxynaphthoic acid (VA) copolymers, respectively, were obtained across the whole composition range. The two amorphous phases of the blends contained only slight amounts of the minority component, and the occurrence of some chemical reaction, mainly at high VA contents, was detected by Fourier transform infrared. Synergisms in the modulus of elasticity and in the tensile strength were seen in most of the blend compositions. The largest synergism was in the 50/50 R3/VA blend, which showed a modulus of elasticity 26% higher than that of either of the two components and a 17% positive deviation in the tensile strength with respect to the rule of mixtures. The different orientation of the LCPs in the blends explains the differences in the mechanical behavior. However, contrary to previous works on LCP blends and despite the almost complete immiscibility, the observed negative volume of mixing appears to be the main parameter that determines the synergistic mechanical behavior. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1022–1032, 2003 相似文献
17.
Xuehong Lu Chaobin He Puwei Liu Anslem C. Griffin 《Journal of polymer science. Part A, Polymer chemistry》2005,43(15):3394-3402
The structures and properties of liquid‐crystalline polymers containing laterally attached p‐terphenyl and p‐pentaphenyl have been studied. In contrast to their mesogenic groups, that is, p‐terphenyl and p‐pentaphenyl, the polymers have much lower crystallinity and also lower nematic‐to‐isotropic transition temperatures. The significant depression in crystallinity can be attributed to flexible chain segments laterally attached to the oligo p‐phenylene rods, which prevent close packing of the rods and thus disrupt the crystallization. The destabilization of the liquid‐crystalline phase is due to the diluting effect of the flexible polymer backbones; that is, the concentration of the mesogenic groups is reduced. The polymer containing p‐pentaphenyl can still exhibit good solubility in common solvents and emit light at about 402 nm in the solvent tetrahydrofuran. In the solid state, the emission redshifts to 418 nm, which is fairly close to the blue‐light emission. An interdigitated packing structure of mesogenic groups has been proposed to represent the structure of the polymer in the oriented state. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3394–3402, 2005 相似文献
18.
Catherine Bianchi Bruno Grassl Bernard Franois Christine Dagron‐Lartigau 《Journal of polymer science. Part A, Polymer chemistry》2005,43(19):4337-4350
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005 相似文献
19.
Şehmus Özden Sevi̇m Ünügür Çeli̇k Ayhan Bozkurt 《Journal of Polymer Science.Polymer Physics》2010,48(10):1016-1021
Throughout this work, the synthesis, thermal as well as proton conducting properties of acid doped heterocyclic polymer were studied under anhydrous conditions. In this context, poly(1‐vinyl‐1,2,4‐triazole), PVTri was produced by free radical polymerization of 1‐vinyl‐1,2,4‐triazole with a high yield. The structure of the homopolymer was proved by FTIR and solid state 13C CP‐MAS NMR spectroscopy. The polymer was doped with p‐toluenesulfonic acid at various molar ratios, x = 0.5, 1, 1.5, 2, with respect to polymer repeating unit. The proton transfer from p‐toluenesulfonic acid to the triazole rings was proved with FTIR spectroscopy. Thermogravimetry analysis showed that the samples are thermally stable up to ~250 °C. Differential scanning calorimetry results illustrated that the materials are homogeneous and the dopant strongly affects the glass transition temperature of the host polymer. Cyclic voltammetry results showed that the electrochemical stability domain extends over 3 V. The proton conductivity of these materials increased with dopant concentration and the temperature. Charge transport relaxation times were derived via complex electrical modulus formalism (M*). The temperature dependence of conductivity relaxation times showed that the proton conductivity occurs via structure diffusion. In the anhydrous state, the proton conductivity of PVTri1PTSA and PVTri2PTSA was measured as 8 × 10?4 S/cm at 150 °C and 0.012 S/cm at 110 °C, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1016–1021, 2010 相似文献
20.
Hamed Peidayesh Zahed Ahmadi Hossein Ali Khonakdar Majid Abdouss Ivan Chodk 《先进技术聚合物》2020,31(6):1256-1269
Citric acid (CA)–modified hydrogels from corn starch and chitosan were synthesized using a semidry condition. This strategy has great benefits of friendly environment because of the absence of organic solvents and compatible with the industrial process. The hydrogel blends were prepared with starch/chitosan ratios of 75/25, 50/50, and 25/75. The thermal stability, morphology, water absorption, weight loss in water, and methylene blue absorption were determined. Multi‐carboxyl structure of CA could result in a chemical cross‐linking reaction between starch, chitosan, and CA. The cross‐linking reaction between free hydroxyl groups of starch, amino groups of chitosan, and carboxyl groups of CA has been confirmed by attenuated total reflectance infrared (ATR‐IR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) analysis. The water absorption properties of CA‐modified hydrogel blends were increased significantly compared with the native starch and chitosan. Moreover, the hydrogel blends modified with CA showed good water resistance and gel content. The morphology study confirmed the complete chemical cross‐linking and porous structure of hydrogel blends. The hydrogel blend with the starch/chitosan ratio of 50/50 presented powerful absorption of methylene blue as well as chemical cross‐linking reaction and dense structure. In sum, the hydrogel blend comprising 50% starch and 50% chitosan has the potential to be applied for water maintaining at large areas, for example, in agriculture. 相似文献