首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymmetrically substituted head‐to‐head polyacetylenes with phenyl and triphenylamine, thienyl or pyrenyl side groups were synthesized through anionic or controlled radical polymerization of 2,3‐disubstituted‐1,3‐butadienes and subsequent dehydrogenation process. Anionic polymerizations of the designed monomers bearing pendent triphenylamine and thienyl group gave narrow disperse disubstituted precursor polybutadienes with exclusive 1,4‐ or 4,1‐structure, which were confirmed by GPC and NMR measurements. In addition, the monomers possessing pyrenyl group were polymerized via nitroxide mediated radical polymerization and the resulting polymers were obtained with controlled molecular weight and low polydispersities. These polybutadiene precursors were then dehydrogenated in the presence of 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone. Thus asymmetrically substituted head‐to‐head polyacetylenes were obtained as indicated by 1H NMR. The properties of polybutadiene precursors and the corresponding polyacetylenes were analyzed by UV–vis, DSC, and TGA. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 395–402  相似文献   

2.
Novel pyridinium salts [N‐(α‐phenylbenzyl)‐, N‐(1‐naphthylmethyl)‐, or N‐cinnamyl p‐ or o‐cyanopyridinium hexafluoroantimonates] were synthesized by the reaction of p‐ or o‐cyanopyridine and the corresponding bromides followed by anion exchange with KSbF6. These pyridinium salts polymerized epoxy monomers at lower temperatures than previously reported for N‐benzyl‐2‐cyanopyridinium hexafluoroantimonate. The o‐substituted pyridinium salts showed higher activity than the p‐substituted ones, and the crosslinked epoxy polymers cured with these initiators showed higher glass‐transition temperatures. These pyridinium salts photoinitiated radical polymerization as well as cationic polymerization. The photopolymerization was accelerated by the addition of aromatic ketones as photosensitizers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1037–1046, 2002  相似文献   

3.
7‐(o‐Substituted phenyl)‐2,6‐dimethyl‐1,4‐benzoquinone methides which have an electron‐donating methoxy‐(o‐OMe, 2a ) and methyl‐ (o‐Me, 2b ) substituents or an electron‐withdrawing cyano‐ (o‐CN, 2c ) and trifluoromethyl‐ (o‐CF3, 2d ) substituents at the ortho‐position of the aromatic ring and 7‐(m‐substituted phenyl)‐2,6‐dimethyl‐1,4‐benzoquinone methide with an electron‐withdrawing trifluoromethyl‐ (m‐CF3, 2e ) substituent at the meta‐position of the aromatic ring were synthesized, and their asymmetric anionic polymerizations using the complex of lithium 4‐isopropylphenoxide with (?)‐sparteine were carried out in toluene at 0 °C. The polymers with negative optical activity were obtained for all of five monomers, and their specific rotation values largely changed depending upon the substituents of the monomers. On the basis of the comparison of various substituents effects, it was found that the specific rotation of obtained polymers is significantly affected by the electronic effects such as inductive and resonance effects rather than the steric and electrostatic effects of the substituent. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1048–1058  相似文献   

4.
Novel vinyl monomers containing 1,4,5,6-tetrahydropyrimidine were prepared by the reaction of N-substituted-1,3-diaminopropane with N,N-dimethyl-formamide dimethylacetal, which gave 1-alkyl or aryl substituted 1,4,5,6-tetrahydropyrimidines, Alkylation of the tetrahydropyrimidine derivatives by chloromethylstyrene produces the N-methyl-N′-vinyl benzyl-1,4,5,6-tetrahydropyrimidinium chloride in high yields. These monomers were readily polymerized in dimethylformamide by AIBN at 80°C. Homopolymers and soluble linear copolymers were prepared and copolymerization parameters were rationalized. Further, insoluble terpolymers prepared from these monomers, styrene and divinylbenzene were tested for the sorption of the weakly acidic gases gave excellent results. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2411–2420, 1997  相似文献   

5.
2,3‐Diaryl substituted maleimides as model compounds of conjugated maleimide polymers [poly(RMI‐alt‐Ar) and poly(RMI‐co‐Ar)] were synthesized from 2,3‐dibromo‐N‐substituted maleimide (DBrRMI) [R= cyclohexyl (DBrCHMI) and n‐hexyl (DBrHMI)] and aryl boronic acid using palladium catalysts. To clarify structures of conjugated polymer containing maleimide units at the main chain, 13C NMR spectra of 2‐aryl or 2,3‐diaryl substituted maleimides were compared with those of N‐substituted maleimide polymers. Copolymers obtained with DBrRMI via Suzuki‐Miyaura cross‐coupling polymerizations or Yamamoto coupling polymerizations were dehalogenated structures at the terminal end. This dehalogenation may contribute to the low polymerizability of DBrRMIs. On the other hand, the π‐conjugated compounds showed high solubility in common organic solvents. The N‐substituents of maleimide cannot significantly affect the photoluminescence spectra of 2,3‐diaryl substituted maleimides derivatives. The fluorescence spectra of poly(RMI‐alt‐Ar) and poly(RMI‐co‐Ar) varied with N‐substituents of the maleimide ring. When exposed to ultraviolet light of wavelength 352 nm, a series of 1,4‐phenylene‐ and/or 2,5‐thienylene‐based copolymers containing N‐substituted maleimide derivatives fluoresced in a yellow to blue color. It was found that photoluminescence emissions and electronic state of π‐conjugated maleimide derivatives were controlled by aryl‐ and N‐substituents, and maleimide sequences of copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Diazodiphenylmethane ( DDM ) undergoes cycloadditions to 1‐substituted buta‐1,3‐dienes exclusively at the C(3)?C(4) bond. At room temperature, the N2 loss from the initially formed 4,5‐dihydro‐3H‐pyrazoles 2 is faster than the cycloaddition and furnishes the vinylcyclopropane derivatives 7 and 9 with structural retention at the C(1)?C(2) bond. 2‐Substituted butadienes react with DDM at the C(3)?C(4) bond to give 12 ; isoprene, however, affords 3,4/1,2 products in the ratio of 86 : 14. DDM is a nucleophilic 1,3‐dipole: 1‐Cyanobutadiene reacts 400 times faster than 1‐methoxybuta‐1,3‐diene (DMF, 40°). The log k2 for the additions to six 1‐substituted butadienes show a linear correlation with σp (Hammett) and ?=+2.9; the log k2 of five 2‐substituted butadienes are linearly related to Taft's σI (?=+1.7). The structures of the vinylcyclopropanes 7, 9 , and 12 are established by NMR spectra and oxidation. A cyclopropyl carbinyl cation is made responsible for the isomerization of 12 , R=Ph, Me, by acetic acid to 4‐substituted 1,1‐diphenylpenta‐1,3‐dienes 25 and 29 ; TsOH at 200° converts 25 further to 9,10‐dihydro‐9‐methyl‐10‐phenyl‐9,10‐ethanoanthracene ( 27 ). Thermal rearrangement of 7, 9 , and 12 at 200–300° produces the 3‐ or 1‐substituted 4,4‐diphenylcyclopentenes 30 and 31 . These give the same mass spectra as the vinylcyclopropanes, and an open‐chain distonic radical cation is suggested as common intermediate. Besides spectroscopic evidence for the cyclopentene structures, hydrogenation and epoxidation are described; NMR data support the trans‐attack by perbenzoic acid.  相似文献   

7.
Anionic polymerizations of three 1,3‐butadiene derivatives containing different N,N‐dialkyl amide functions, N,N‐diisopropylamide (DiPA), piperidineamide (PiA), and cis‐2,6‐dimethylpiperidineamide (DMPA) were performed under various conditions, and their polymerization behavior was compared with that of N,N‐diethylamide analogue (DEA), which was previously reported. When polymerization of DiPA was performed at ?78 °C with potassium counter ion, only trace amounts of oligomers were formed, whereas polymers with a narrow molecular weight distribution were obtained in moderate yield when DiPA was polymerized at 0 °C in the presence of LiCl. Decrease in molecular weight and broadening of molecular weight distribution were observed when polymerization was performed at a higher temperature of 20 °C, presumably because of the effect of ceiling temperature. In the case of DMPA, no polymer was formed at 0 °C and polymers with relatively broad molecular weight distributions (Mw/Mn = 1.2) were obtained at 20 °C. The polymerization rate of PiA was much faster than that of the other monomers, and poly(PiA) was obtained in high yield even at ?78 °C in 24 h. The microstructure of the resulting polymers were exclusively 1,4‐ for poly(DMPA), whereas 20–30% of the 1,2‐structure was contained in poly(DiPA) and poly(PiA). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3714–3721, 2010  相似文献   

8.
The anionic polymerization of derivatives of 4‐phenyl‐1‐buten‐3‐yne was carried out to investigate the effect of substituents on the polymerization behavior. The polymerization of 4‐(4‐fluorophenyl)‐1‐buten‐3‐yne and 4‐(2‐fluorophenyl)‐1‐buten‐3‐yne in tetrahydrofuran at −78 °C with n‐BuLi/sparteine as an initiator gave polymers consisting of 1,2‐ and 1,4‐polymerized units in quantitative yields with ratios of 80/20 and 88/12, respectively. The molecular weights of the polymers were controlled by the ratio of the monomers to n‐BuLi, and the distribution was relatively narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), supporting the living nature of the polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1016–1023, 2001  相似文献   

9.
New methacrylate monomers with carbazole moieties as pendant groups were synthesized by multistep syntheses starting from carbazoles with biphenyl substituents in the aromatic ring. The corresponding polymers were prepared using a free‐radical polymerization. The novel polymers contain N‐alkylated carbazoles mono‐ or bi‐substituted with biphenyl groups in the aromatic ring. N‐alkyl chains in polymers vary by length and structure. All new polymers were synthesized to evaluate the structural changes in terms of their effect on the energy profile, thermal, dielectric, and photophysical properties when compared to the parent polymer poly(2‐(9H‐carbazol‐9‐yl)ethyl methacrylate). According to the obtained results, these compounds may be well suited for memory resistor devices. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 70–76  相似文献   

10.
Vinyl‐conjugated monomer (methyl acrylate, MA) and allyl 2‐bromopropanoate (ABP)‐possessing unconjugated C?C and active C? Br bonds were polymerized via the Cu(0)‐mediated simultaneous chain‐ and step‐growth radical polymerization at ambient temperature using Cu(0) as catalyst, N,N,N′,N″,N″‐pentamethyldiethylenetriamine as ligand and dimethyl sulfoxide as solvent. The conversion was reached higher than 98% within 20 h. The obtained polymers showed block structure consisting of polyester and vinyl polymer moieties. The Cu(0)‐catalyzed simultaneous chain‐ and step‐growth radical polymerization mechanism was demonstrated by NMR, matrix‐assisted laser desorption ionization time‐of‐flight, and GPC analyses. Furthermore, the obtained copolymers of MA and ABP were further modified with poly(N‐isopropylamide) through radical thiol‐ene “click” chemistry from the terminal double bond. The thermoresponsive behavior of this block copolymer was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3907–3916  相似文献   

11.
A series of novel N‐substituted‐N‐vinylformamides were synthesized, and the effect of bulky substituents on their radical polymerizability and polymer structure were investigated. N‐(p‐Methoxybenzyl)‐N‐vinylformamide ( 3 ) and N‐cyclohexylmethyl‐N‐vinylformamide ( 4 ) generated polymers, while it was known that their N‐vinylacetamide derivatives did not. 1H NMR and 13C NMR analyses of poly( 3 ), however, revealed almost no difference among the various polymerization conditions, implying that the substituent bulkiness did not influence the polymer structures. On the other hand, the chiral polymers, which were obtained by the radical polymerization of N‐(S)‐2‐methylbutyl‐N‐vinylformamide ((S)‐ 5 ) and N‐(S)‐2,3‐dihydroxypropyl‐N‐vinylformamide ((S)‐ 7 ) at 0 °C, showed sharper spectral patterns than those obtained at higher polymerization temperatures. Furthermore, the intensities of their positive cotton effects on circular dichroism increased when the polymerization temperature was low, suggesting that the substituent bulkiness of (S)‐ 5 and (S)‐ 7 influenced the polymer structures, such as their stereoregularity and regioregularity. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Formaldehyde oxime and three O‐alkyl derivatives were examined as potential imine monomers. Formaldehyde oxime spontaneously polymerized below 60 °C and did not polymerize above 60 °C (ceiling temperature), even in the presence of free‐radical or cationic initiators. The O‐benzoyl derivative was isolated as the cyclic trimer but could not be converted into the monomeric form. Formaldehyde O‐benzyloxime was synthesized and isolated. Attempted homopolymerizations in the presence of free‐radical initiators only led to oligomers, whereas with cationic initiators only cyclic trimer was obtained. Copolymerizations with appropriate vinyl monomers and free‐radical and anionic initiators yielded only low molecular weight polymers. Cationic copolymerizations gave higher molecular weights and polymer yields, but the polymers containing appreciable amounts of imine function had very low molecular weights. We conclude that the polymerizability of imines is extremely sensitive to the substitution pattern: imines with only a substituent on nitrogen are unstable and readily polymerize, whereas imines with more substituents generally do not polymerize. Electron‐withdrawing substituents are more favorable to polymerizability. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1866–1872, 2000  相似文献   

13.
The mixtures of exo‐endo‐monomers and isomerically pure endo‐monomers of N‐pentafluorophenyl‐norbornene‐5,6‐dicarboximide ( 2a ) and N‐phenyl‐norbornene‐5,6‐dicarboximide ( 2b ) were synthesized and polymerized via ring opening metathesis polymerization using bis(tricyclohexylphosphine) benzylidene ruthenium ( IV ) dichloride ( I ) and tricyclohexylphosphine [1,3‐bis(2,4,6‐trimethylphenyl)‐4,5‐dihydroimidazol‐2‐ylidene][benzylidene] ruthenium dichloride ( II ). Ring opening metathesis polymerization of mixtures of exo‐endo‐monomers ( 2a ) and ( 2b ) and pure endo‐ 2b gave the corresponding high molecular weights poly(N‐pentafluorophenyl‐norbornene‐5,6‐dicarboximide) ( 3a ) and poly(N‐phenyl‐norbornene‐5,6‐dicarboximide) ( 3b ). The isomerically pure endo‐ 2a did not polymerize by I in these conditions, since I is the least active catalyst and endo‐ 2a is the least active monomer because of the intramolecular complex formation between the Ru active center and the fluorine atom of ring‐opened endo‐ 2a on the one hand and steric hindrances caused by the pentafluorinated ring on the other. The quantitative hydrogenation of the polymer 3a , at room temperature and 115 bar, was achieved by a Wilkinson's catalyst. The new polynorbornene bearing highly fluorinated sulfonic acid groups (5) was obtained by the reaction of the hydrogenated poly(N‐pentafluorophenyl‐norbornene‐5,6‐dicarboximide) (4) with sodium 4‐hydroxybenzenesulfonate dihydrate. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2925–2933, 2010  相似文献   

14.
A series of extended 6‐substituted quinoxaline AB monomer mixtures, 2‐(4‐fluorophenyl)‐3‐[4‐(4‐hydroxyphenoxy)phenyl]‐6‐substituted quinoxaline and 3‐(4‐fluorophenyl)‐2‐[4‐(4‐hydroxyphenoxy)phenyl]‐6‐substituted quinoxaline, were prepared and polymerized to afford phenylquinoxaline oligomers. High‐molecular‐weight polymers could not be obtained because of the formation of cyclic oligomers. On the basis of matrix‐assisted laser desorption/ionization time‐of‐flight analysis and molecular modeling results, the formation of a cyclic dimer could be a favorable process resulting in low‐molecular‐weight oligomers. They were completely soluble and amorphous, with glass‐transition temperatures varying from 165 to 266 °C, and they had thermooxidative stability, with samples displaying 5% weight loss temperatures of 419–511 °C in nitrogen. The thermal properties of the monomers and resultant polymers dramatically depended on the polarity of the substituents. The monomers and resultant oligomers displayed high fluorescence in tetrahydrofuran solutions and N‐methyl‐2‐pyrrolidinone solutions, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6465–6479, 2005  相似文献   

15.
New imine monomers containing C-aryl and N-cyano substituents were synthesized and polymerized by both radical and anionic initiation. Homopolymerization yielded low molecular weight polymers (Mn < 2100). Higher yields were obtained with anionic initiation rather than radical initiation. Radical initiated copolymerization with p-methoxystyrene gave low yields of low molecular weight copolymers. Radical initiated copolymerization with methyl acrylate gave copolymers of 15,000–,32,000 molecular weight in moderate yields, but with rather low incorporation of the imine monomer. The C-substituent affected the anionic and free radical reactivity similarly. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2703–2710, 1997  相似文献   

16.
Pd‐catalyzed cross‐coupling of halides with CF3‐substituted diazo compounds or N‐tosylhydrazones has been explored for the synthesis of CF3‐substituted alkenes and 1,3‐butadienes. Pd–carbene migratory insertion plays the key role in these transformations.  相似文献   

17.
A stereoregular 2‐amino‐glycan composed of a mannosamine residue was prepared by ring‐opening polymerization of anhydro sugars. Two different monomers, 1,6‐anhydro‐2‐azido‐mannose derivative ( 3 ) and 1,6‐anhydro‐2‐(N, N‐dibenzylamino)‐mannose derivative ( 6 ), were synthesized and polymerized. Although 3 gave merely oligomers, 6 was promptly polymerized into high polymers of the number‐average molecular weight (Mn) of 2.3 × 104 to 2.9 × 104 with 1,6‐α stereoregularity. The differences of polymerizability of 3 and 6 from those of the corresponding glucose homologs were discussed. It was found that an N‐benzyl group is exceedingly suitable for protecting an amino group in the polymerization of anhydro sugars of a mannosamine type. The simultaneous removal of O‐ and N‐benzyl groups of the resulting polymers was achieved by using sodium in liquid ammonia to produce the first 2‐amino‐glycan, poly‐(1→6)‐α‐D ‐mannosamine, having high molecular weight through ring‐opening polymerization of anhydro sugars.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
The catalyst structure–property relationships of the phenoxyimine complexes in controlled cationic polymerization of vinyl ethers were investigated based on the Hammett correlation. The correlation analyses of a series of experiments using the phenoxyimine ligands/TiCl4 initiating systems indicated that the substituents on the N‐aryl phenoxyimine ligands affected the polymerization rate and stereoselectivity. Importantly, a linear correlation was observed between the Hammett substituent constants and the polymerization rates, which indicates that the Lewis acidity of the complex is affected by the electron‐withdrawing and ‐donating effects of the substituents. The tacticity of product polymers correlated to the Hammett substituent constants. Unlike the relationship with the polymerization rates, the σ values, which account for the enhanced resonance effects, were more appropriate for the relationship with the tacticity than the normal σ values. In contrast, the polymerization behavior using o‐substituted ligands exhibited a trend different from those using p‐ or m‐substituted ligands. The structural change, which was caused by the rotation of the C? N bonding, most likely triggered the acceleration effect in the case of the o‐substituents. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2021–2029  相似文献   

19.
Partially fluorinated and perfluorinated dioxolane and dioxane derivatives have been prepared to investigate the effect of fluorine substituents on their free‐radical polymerization products. The partially fluorinated monomer 2‐difluoromethylene‐1,3‐dioxolane (I) was readily polymerized with free‐radical initiators azobisisobutyronitrile or tri(n‐butyl)borane–air and yielded a vinyl addition product. However, the hydrocarbon analogue, 2‐methylene‐1,3‐dioxolane (II), produced as much as 50% ring opening product at 60 °C by free‐radical polymerization. 2‐Difluoromethylene‐4‐methyl‐1,3‐dioxolane (III) was synthesized and its free‐radical polymerization yielded ring opening products: 28% at 60 °C, decreasing to 7 and 4% at 0 °C and −78 °C, respectively. All the fluorine‐substituted, perfluoro‐2‐methylene‐4‐methyl‐1,3‐dioxolane (IV) produced only a vinyl addition product with perfluorobenzoylperoxide as an initiator. The six‐membered ring monomer, 2‐methylene‐1,3‐dioxane (V), caused more than 50% ring opening during free‐radical polymerization. However, the partially fluorinated analogue, 2‐difluoromethylene‐1,3‐dioxane (VI), produced only 22% ring opening product with free‐radical polymerization and the perfluorinated compound, perfluoro‐2‐methylene‐1,3‐dioxane (VII), yielded only the vinyl addition polymer. The ring opening reaction and the vinyl addition steps during the free‐radical polymerization of these monomers are competitive reactions. We discuss the reaction mechanism of the ring opening and vinyl addition polymerizations of these partially fluorinated and perfluorinated dioxolane and dioxane derivatives. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5180–5188, 2004  相似文献   

20.
The gas permeation properties of polyarylates were tuned by varying nature and site of substituents present on both of its monomers, viz., bisphenol and dicarboxylic acid. The phenyl rings of hexafluorobisphenol‐A were substituted in asymmetric manner by polar bromine to obtain dibromohexafluorobisphenol‐A. This bisphenol was polymerized with equimolar mixture of iso‐ and terephthalic acid (base case), bromo‐ and nitroterephthalic acid (polar group substituted acids), 4,4′‐hexafluoroisopropylidene bis(benzoic acid), and t‐butyl isophthalic acid (bulky group containing acids). Physical properties and gas permeation properties of these polyarylates were investigated to assess combined effects of asymmetric nature of bisphenol substitution, polar nature of substituent bromine, hexafluoroisopropylidene group present at the bridge position of bisphenol, and substituent present on the acid moiety. The combination of these substituent types led these polyarylates to lie near Robeson upper bound. The gas sorption analysis and estimation of diffusivity in these polyarylates shed a light on observed variations in gas permeation properties by attempted structural variations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3156–3168, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号