首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single electron transfer‐living radical polymerization (SET‐LRP) has been used as a new technique for the synthesis of polyacrylonitrile (PAN) catalyzed by Cu(0) powder with carbon tetrachloride (CCl4) as the initiator and hexamethylenetetramine (HMTA) as the ligand in N,N‐dimethylformamide (DMF) or mixed solvent. Well‐controlled polymerization has been achieved as evidenced by a linear increase of molecular weight with respect to monomer conversion as well as narrow molecular weight distribution. Kinetics data of the polymerizations at both ambient temperature and elevated temperature demonstrate living/controlled feature. An increase in the concentration of ligand yields a higher monomer conversion within the same time frame and almost no polymerization occurs in the absence of ligand due to the poor disproportionation reaction of Cu(I). The reaction rate exhibits an increase with the increase of the amount of catalyst Cu(0)/HMTA. Better control on the molecular weight distribution has been produced with the addition of CuCl2. In the presence of more polar solvent water, it is observed that there is a rapid increase in the polymerization rate. The effect of initiator on the polymerization is also preliminarily investigated. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
The Cu(0)‐mediated single electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate (MMA) using ethyl 2‐bromoisobutyrate (EBiB) as an initiator with Cu(0)/N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine as a catalyst system in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) was studied. The polymerization showed some living features: the measured number‐average molecular weight (Mn,GPC) increased with monomer conversion and produced polymers with relatively low polydispersities. The increase of HFIP concentration improved the controllability over the polymerization with increased initiation efficiency and lowered polydispersity values. 1H NMR, MALDI‐TOF‐MS spectra, and chain extension reaction confirmed that the resultant polymer was end‐capped by EBiB species, and the polymer can be reactivated for chain extension. In contrast, in the cases of dimethyl sulfoxide or N,N‐dimethylformamide as reaction solvent, the polymerizations were uncontrolled. The different effects of the solvents on the polymerization indicated that the mechanism of SET‐LRP differed from that of atom transfer radical polymerization. Moreover, HFIP also facilitated the polymerization with control over stereoregularity of the polymers. Higher concentration of HFIP and lower reaction temperature produced higher syndiotactic ratio. The syndiotactic ratio can be reached to about 0.77 at 1/1.5 (v/v) of MMA/HFIP at ?18 °C. In conclusion, using HFIP as SET‐LRP solvent, the dual control over the molecular weight and tacticity of PMMA was realized. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6316–6327, 2009  相似文献   

3.
Vinyl‐conjugated monomer (methyl acrylate, MA) and allyl 2‐bromopropanoate (ABP)‐possessing unconjugated C?C and active C? Br bonds were polymerized via the Cu(0)‐mediated simultaneous chain‐ and step‐growth radical polymerization at ambient temperature using Cu(0) as catalyst, N,N,N′,N″,N″‐pentamethyldiethylenetriamine as ligand and dimethyl sulfoxide as solvent. The conversion was reached higher than 98% within 20 h. The obtained polymers showed block structure consisting of polyester and vinyl polymer moieties. The Cu(0)‐catalyzed simultaneous chain‐ and step‐growth radical polymerization mechanism was demonstrated by NMR, matrix‐assisted laser desorption ionization time‐of‐flight, and GPC analyses. Furthermore, the obtained copolymers of MA and ABP were further modified with poly(N‐isopropylamide) through radical thiol‐ene “click” chemistry from the terminal double bond. The thermoresponsive behavior of this block copolymer was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3907–3916  相似文献   

4.
Cu(0)‐mediated living radical polymerization was first extended to acrylonitrile (AN) to synthesize polyacrylonitrile with a high molecular weight and a low polydispersity index. This was achieved by using Cu(0)/hexamethylated tris(2‐aminoethyl)amine (Me6‐TREN) as the catalyst, 2‐bromopropionitrile as the initiator, and dimethyl sulfoxide (DMSO) as the solvent. The reaction was performed under mild reaction conditions at ambient temperature and thus biradical termination reaction was low. The rapid and extensive disproportionation of Cu(I)Br/Me6‐TREN in DMSO/AN supports a mechanism consistent with a single electron transfer‐living radical polymerization (SET‐LRP) rather than activators generated by electron transfer atom transfer radical polymerization (AGET ATRP). 1H NMR analysis and chain extension experiment confirm the high chain‐end functionality of the resultant polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
An iodine‐based initiator, 2‐iodo‐2‐methylpropionitrile (CPI), was utilized for the single‐electron transfer and degenerative chain transfer mediated living radical polymerization (SET‐DTLRP) of methyl methacrylate (MMA) in the absence of ligand, at ambient temperature. The CPI‐initiated ligand‐free polymerizations manifested reasonable control over molecular weights with relatively narrow distributions (Mw/Mn ≤ 1.35). The living nature of the polymers was further confirmed by successful chain extension reaction and 1H NMR with high chain‐end fidelity (~96%). Screening of the available solvents suggested that the controllability of this polymerization was highly dependent on the kind of solvents, wherein dimethyl sulfoxide was a better solvent for a controlled molecular weight. The proposed ligand‐free SET‐DTLRP initiated by CPI was intriguing since it would dramatically decrease the concentration of Cu(0) ions both in polymerization system and resultant polymer, and provided a more economical and eco‐friendly reversible‐deactivation radical polymerization technique. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
In this study, the polymerization of (2‐hydroxyethyl) acrylate (HEA), in polar media, using Cu(0)‐mediated radical polymerization also called single‐electron transfer–living radical polymerization (SET‐LRP) is reported. The kinetics aspects of both the homopolymerization and the copolymerization from a poly(ethylene oxide) (PEO) macroinitiator were analyzed by 1H NMR. The effects of both the ligand and the solvent were studied. The polymerization was shown to reach very high monomer conversions and to proceed in a well‐controlled fashion in the presence of tris[2‐(dimethylamino)ethyl]amine Me6‐TREN and N, N,N′, N″, N″‐pentamethyldiethylenetriamine (PMDETA) in dimethylsulfoxide (DMSO). SET‐LRP of HEA was also led in water, and it was shown to be faster than in DMSO. In pure water, Me6‐TREN allowed a better control over the molar masses and polydispersity indices than PMDETA and TREN. Double hydrophilic PEO‐b‐PHEA block copolymers, exhibiting various PHEA block lengths up to 100 HEA units, were synthesized, in the same manner, from a bromide‐terminated PEO macroinitiator. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Cellulose‐based macroinitiators with predetermined number of initiation sites were synthesized by acylation of microcrystalline cellulose AVICEL PH‐101 with 2‐bromoisobutyryl bromide under homogeneous reaction conditions in the N,N‐dimethylacetamide/LiCl solvent system. The influence of different methods of cellulose activation on acylation efficiency and reproducibility was investigated. Best results were obtained using thermal activation under reduced pressure or the newly introduced protocol based on solvent exchange to 1,4‐dioxane. Prepared macroinitiators were used for grafting with styrene and methyl methacrylate (MMA) using optimized atom transfer radical polymerization reaction conditions to achieve well‐controlled polymerizations with high initiation efficiency. For MMA grafting, the initiation efficiency was shown to be dependent on certain reaction conditions, such as type of solvent, monomer concentration, or the presence of a sacrificial initiator. In addition, single‐electron transfer living radical polymerization with Cu(0) as the catalyst was used for the first time to prepare cellulose‐graft‐polystyrene and cellulose‐graft‐poly(MMA) copolymers in a homogeneous phase. In summary, homogeneous reaction conditions, stoichiometric control in the preparation of macroinitiators, and controlled grafting jointly allowed for an extensive control of copolymers architecture, that is, density of grafting, composition, and molecular parameters of grafts. Moreover, some of the prepared copolymers were characterized by static and dynamic light scattering and microscopic techniques (transmission electron microscopy and atomic force microscopy). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Sn(0)‐mediated single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) with carbon tetrachloride (CCl4) as initiator and hexamethylenetetramine (HMTA) as ligand in N, N‐dimethylformamide (DMF) was studied. The polymerization obeyed first order kinetic. The molecular weight of polyacrylonitrile (PAN) increased linearly with monomer conversion and PAN exhibited narrow molecular weight distributions. Increasing the content of Sn(0) resulted in an increase in the molecular weight and the molecular weight distribution. Effects of ligand and initiator were also investigated. The block copolymer PAN‐b‐polymethyl methacrylate with molecular weight at 126,130 and polydispersity at 1.36 was successfully obtained. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
The use of DMSO as solvent for transition metal mediated living radical polymerization was investigated using copper (I) bromide/N‐(n‐propyl)‐2‐pyridyl‐methanimine catalyst system and ethyl‐2‐bromoisobutyrate as initiator. The best conditions for polymerization in DMSO of different methacrylates (MMA, BMA, DMAEMA, HEMA) were determined. In all cases, the measured number‐average molar mass of the product increased linearly with monomer conversion in agreement with the theoretical Mn with low polydispersity products (1.16 < PDI < 1.4) achieved. Solvent was found to play a crucial role in the process. The effect of the polar solvent has been investigated and it was shown that DMSO could coordinate copper (II), increasing the activation process, or copper (I), changing the nature of the copper catalyst by competitive complexation of ligand and DMSO. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6299–6308, 2004  相似文献   

10.
The effect of initial ligand concentration on the apparent rate constant of propagation of single‐electron transfer living radical polymerization (SET‐LRP) of MA in DMSO at 25 °C was examined using various lengths of Cu(0) wire as catalyst. It was determined that unlike other parameters such as initiator concentration, solvent concentration, and deactivator concentration, no simple external rate‐order for the ligand concentration could be determined. Rather, the response of the rate of SET‐LRP to initial ligand concentration is complex and is likely determined by a competition of ligand‐dependent extent of disproportionation as well as the role of ligand concentration in the surface mediated activation process. Results suggest that a minimum concentration of ligand is needed to achieve both acceptable reaction rate and reaction control, and therefore, ligand concentration must be considered in designing experimental conditions for SET‐LRP. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5629–5638, 2009  相似文献   

11.
A variety of conditions, including catalysts [CuCl, CuI, Cu2O, and Cu(0)], ligands [2,2′‐bipyridine (bpy), tris(2‐dimethylaminoethyl)amine (Me6‐TREN), polyethyleneimine, and hexamethyl triethylenetetramine], initiators [CH3CHClI, CH2I2, CHI3, and F(CF2)8I], solvents [diphenyl ether, toluene, tetrahydrofuran, dimethyl sulfoxide (DMSO), dimethylformamide, ethylene carbonate, dimethylacetamide, and cyclohexanone], and temperatures [90, 25, and 0 °C] were studied to assess previous methods for poly(methyl methacrylate)‐b‐poly(vinyl chloride)‐b‐poly(methyl methacrylate) (PMMA‐b‐PVC‐b‐PMMA) synthesis by the living radical block copolymerization of methyl methacrylate (MMA) initiated with α,ω‐di(iodo)poly(vinyl chloride). CH3CHClI was used as a model for α,ω‐di(iodo)poly(vinyl chloride) employed as a macroinitiator in the living radical block copolymerization of MMA. Two groups of methods evolved. The first involved CuCl/bpy or Me6‐TREN at 90 °C, whereas the second involved Cu(0)/Me6‐TREN in DMSO at 25 or 0 °C. Related ligands were used in both methods. The highest initiator efficiency and rate of polymerization were obtained with Cu(0)/Me6‐TREN in DMSO at 25 °C. This demonstrated that the ultrafast block copolymerization reported previously is the most efficient with respect to the rate of polymerization and precision of the PMMA‐b‐PVC‐b‐PMMA architecture. Moreover, Cu(0)/Me6‐TREN‐catalyzed polymerization exhibits an external first order of reaction in DMSO, and so this solvent has a catalytic effect in this living radical polymerization (LRP). This polymerization can be performed between 90 and 0 °C and provides access to controlled poly(methyl methacrylate) tacticity by LRP and block copolymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1935–1947, 2005  相似文献   

12.
Two kinds of Schiff base, N,N′‐dibenzylidene‐1,2‐diaminoethane (NDBE) and N,N′‐disalicylidene‐1,2‐diaminoethane, have been found as efficient organic catalyst for reversible complexation‐mediated radical polymerization (RCMP) of methyl methacrylate (MMA) for the first time. The polymerization results show obvious features of “living”/controlled radical polymerization. Well‐defined and low‐polydispersity polymers (Mw/Mn = 1.20–1.40) are obtained in RCMP of MMA catalyzed by Schiff base at mild temperature (65–80°C). Moreover, Schiff base also exhibits a particularly high reactivity for RCMP of MMA with in situ formed alkyl iodide initiator. The polymer molecular weight and its polydispersity (Mw/Mn is around 1.20) are well controlled even with high monomer conversion. Notably, when the dosage of azo initiator is same as the dosage of iodine, the polymerization could also be realized in the presence of NDBE. The living feature of synthesized polymer is confirmed through the chain extension experiment. In short, Schiff base is a kind of high‐efficient catalyst for RCMP and reverse RCMP of MMA, which can be one of the most powerful and robust techniques for polymer synthesis. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1653–1663  相似文献   

13.
Cu(0) mediated living radical polymerization was successfully applied to synthesize graft‐copolymers from the hemicellulose acetylated galactoglucomannan. Functionalizing the polysaccharide backbone with α‐bromo isobutyric acid gave rise to a macroinitiator for single‐electron‐transfer mediated living radical polymerization (SET‐LRP). This macroinitiator with a degree of substitution of 0.15 or 0.20 was used in the graft‐SET‐LRP of methyl methacrylate in dimethyl sulfoxide as well as N‐isopropyl acrylamide and acrylamide in water. Kinetic analyses confirm conversions of up to 73% and a controlled behavior of the SET‐LRP process providing high molecular weight hemicellulose‐based hybrid copolymers with a brush‐like architecture. Derived graft‐copolymers varied significantly in solubility properties, ranging from hydrophobic via temperature responsive water‐solubility to water‐soluble. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Isobornyl methacrylate (IBMA), a bulky hydrophobic methacrylate, undergoes very fast polymerization, in bulk, with Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/ethyl‐2‐bromoisobutyrate system, at ambient temperature. IBMA also undergoes a spontaneous initiator‐free polymerization, at ambient temperature, with Cu(I)Br/PMDETA catalytic system in dimethyl sulfoxide–water mixtures. The rate of the polymerization is seen to increase with the water content up to 80 mol % of water. A possible intervention of air in initiation is proposed. The active Cu(0) formed by the disproportionation of Cu(I) species in aqueous medium probably plays a vital role for a possible air‐initiation of IBMA via single electron transfer‐living radical polymerization (SET‐LRP) mechanism. A high tolerance level to water under SET‐LRP conditions is demonstrated. The poly(IBMA) samples obtained exhibit low molecular weight distributions (1.1–1.3). Similar behavior was not observed with other common methacrylates such as methyl methacrylate, t‐butyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Samarium powder was applied as a catalyst for single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) with 2‐bromopropionitrile as initiator and N,N,N,N′‐tetramethylethylenediamine as ligand. First‐order kinetics of polymerization with respect to the monomer concentration, linear increase of the molecular weight with monomer conversion, and the highly syndiotactic polyacrylonitrile (PAN) obtained indicate that the SET‐LRP of AN could simultaneously control molecular weight and tacticity of PAN. An increase in syndiotacticity of PAN obtained in HFIP was observed compared with that obtained by SET‐LRP in N,‐N‐dimethylformamide (DMF). The syndiotacticity markedly increased with the HFIP volume. The syndiotacticity of PAN prepared by SET‐LRP of AN using Sm powder as catalyst in DMF was higher than that prepared with Cu powder as catalyst. The increase in syndiotacticity of PAN with Sm content was more pronounced than the increase in its isotacticity. The block copolymer PAN‐b‐polymethyl methacrylate (52,310 molecular weight and 1.34 polydispersity) was successfully prepared. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The properties of a ligand, including molecular structure and substituents, strongly affect the catalyst activity and control of the polymerization in atom transfer radical polymerization (ATRP). A new tetradentate ligand, N,N′‐bis(pyridin‐2‐ylmethyl‐3‐hexoxo‐3‐oxopropyl)ethane‐1,2‐diamine (BPED) was synthesized and examined as the ligand of copper halide for ATRP of styrene (St), methyl acrylate (MA), and methyl methacrylate (MMA), and compared with other analogous linear tetrdendate ligands. The BPED ligand was found to significantly promote the activation reaction: the CuBr/BPED complex reacted with the initiators so fast that a large amount of Cu(II)Br2/BPED was produced and thus the polymerizations were slow for all the monomers. The reaction of CuCl/BPED with the initiator was also fast, but by reducing the catalyst concentration or adding CuCl2, the activation reaction could be slowed to establish the equilibrium of ATRP for a well‐controlled living polymerization of MA. CuCl/BPED was found very active for the polymerization of MA. For example, 10 mol% of the catalyst relatively to the initiator was sufficient to mediate a living polymerization of MA. The CuCl/BPED, however, could not catalyze a living polymerization of MMA because the resulting CuCl2/BPED could not deactivate the growing radicals. The effects of the ligand structures on the catalysis of ATRP are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3553–3562, 2004  相似文献   

17.
Crosslinking copolymerization of butyl methacrylate with a small amount of divinylbenzene (DVB) was carried out using single‐electron transfer‐living radical polymerization initiated with carbon tetrachloride (CCl4) and catalyzed by Cu(0)/N‐ligand in N,N‐dimethylformamide to produce a highly oil‐absorbing gel. The polymerization, gelation process, and oil‐absorbing properties were studied in detail. Analysis of monomer conversion with reaction time showed that the polymerization followed first‐order kinetics for both linear and crosslinking polymerization before gelation. Higher levels of DVB led to earlier gelation and the influence of N‐ligand on gelation was also significant. Under optimal conditions, oil absorption of the prepared gel to chloroform could reach 42.1 g·g?1. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3233–3239  相似文献   

18.
The commercially available tris(2‐aminoethyl)amine (TREN) was used as ligand to mediate the single‐electron transfer‐living radical polymerization (SET‐LRP) of methyl acrylate in dimethyl sulfoxide initiated with the bifunctional initiator bis(2‐bromopropionyl)ethane and catalyzed by both nonactivated and activated Cu(0) wire. A comparative study between TREN and tris(2‐dimethylaminoethyl)amine (Me6‐TREN) ligand, that is more commonly used in SET‐LRP, demonstrated that TREN provided a slower polymerization but the chain‐ends functionality of the resulting bifunctional poly(methyl acrylate) was near quantitative and comparable to that obtained when Me6‐TREN was used as a ligand. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012.  相似文献   

19.
The polar solvents, N‐methylpyrrolidone (NMP), N,N‐dimethylformamide (DMF), and acetonitrile (CH3CN) were used as ligands for iron(III)‐mediated activators generated by electron transfer atom transfer radical polymerizations (AGET ATRPs) of methyl methacrylate (MMA) with various initiators and reducing agents. Polymerizations were conducted with a molar ratio of [MMA]0/[initiator]0/[FeBr3]0/[reducing agent]0 = 100:1:1:0.5 and a volume ratio of MMA/solvent = 2:1 at 60 °C to investigate the effects of initiator, solvent and reducing agent, and most of the systems showed the typical features of “living”/controlled radical polymerization. In order to get a deeper understanding of the mechanism, the amount of the reducing agent was changed to study the polymerization behavior. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1020–1027  相似文献   

20.
Crystalline nanocellulose (CNC) was grafted with poly(methyl acrylate) (PMA) to yield modified CNC that is readily dispersed in a range of organic solvents [including tetrahydrofuran, chloroform, dimethylformamide, and dimethyl sulfoxide (DMSO)], in contrast to native CNC which is dispersible primarily in aqueous solutions. First, a CNC macroinitiator with high bromine initiator density was prepared through a 1,1′‐carbonyldiimidazole‐mediated esterification reaction in DMSO‐based dispersant. MA was then grafted from the CNC macroinitiator through SET living radical polymerization (LRP) at room temperature using Cu(0) (copper wire) as the catalyst. The LRP grafting proceeded rapidly, with ~30% monomer conversion achieved within 30 min, yielding approximately six times the mass of PMA with respect to CNC macroinitiator. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2800–2808  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号