首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Monofunctional benzoxazine with ortho‐methylol functionality has been synthesized and highly purified. The chemical structure of the synthesized monomer has been confirmed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT‐IR) and elemental analysis. One‐dimensional (1D) 1H NMR is used with respect to varied concentration of benzoxazines to study the specific nature of hydrogen bonding in both ortho‐methylol functional benzoxazine and its para counterpart. The polymerization behavior of benzoxazine monomer has been also studied by in situ FT‐IR and differential scanning calorimetry, experimentally supporting the polymerization mechanism of ortho‐methylol functional benzoxazine we proposed before. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3635–3642  相似文献   

2.
Three aromatic diamine‐based benzoxazines were successfully prepared by a facile, clean, one‐pot procedure from 1,4‐phenylenediamine ( 1 ), 4,4′‐diaminodiphenyl ether ( 2 ), and 4,4′‐diaminodiphenyl methane ( 3 ), respectively. Their structures were confirmed by NMR spectra and single crystal diffractogram. The effect of the reactivity of diamines on the purity of the resultant benzoxazines was discussed. The resultant benzoxazines were applied as hardeners for cresol novolac epoxy (CNE). The processing window, the latent curing characteristic, and the miscibility of benzoxazine/CNE systems were discussed. Compared with diamines ( 1 and 3 ), ( 1 and 3 )‐based benzoxazines show latent curing characteristic as epoxy hardeners, and wide processing windows can be obtained. Compared with diamine ( 2 ) which is immiscible with CNE in the molten state, ( 2 )‐based benzoxazine shows good miscibility with CNE. Dynamic mechanical analysis shows the Tgs of the benzoxazine/CNE thermosets are as high as 242–243 °C. Thermogravimetric analysis shows the outstanding thermal stability of the resultant thermosets. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2430–2437, 2010  相似文献   

3.
Novel mono‐ and difunctional aliphatic oxyalcohol‐based benzoxazines have been synthesized and characterized in detail. Molecular structures of the monomers were investigated by spectral analysis. The obtained benzoxazine monomers exhibit fluidic behavior, which makes them particularly useful for many applications compared to other traditional benzoxazines. Differential scanning calorimetry was used to monitor the thermal crosslinking behavior of synthesized monomers. Mono‐ and bifunctional benzoxazine monomers exhibited low curing exhothermic peak with the onset around 173 and 180 °C, respectively. Relatively, low ring‐opening polymerization temperature was due to the hydroxyl groups present in the structure of the monomers. The hydrogen bonding of hydroxyl groups may cause alignment of the monomers in the liquid state. Thermal stabilty of the polybenzoxazines was studied by thermogravimetric analysis. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

4.
1,3‐Benzoxazine monomers having ammonium salt of carboxylic acid have been developed. These 1,3‐benzoxazines 1a and 1b were easily synthesized from the corresponding tetrabutylammonium salts of glycine and β‐alanine, respectively. The glycine‐derived benzoxazine 1a exhibited remarkably high reactivity, which allowed its thermally induced ring‐opening polymerization in bulk at 100 °C, at which N‐methyl‐1,3‐benzoxazine 1d did not undergo the polymerization at all. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
1,3‐benzoxazine 1 , bearing 4‐pyridyl moiety on the nitrogen atom, was synthesized from p‐cresol, 4‐aminopyridine, and paraformaldehyde. The efficient synthesis was achieved by adding acetic acid to suppress the strong basicity caused by the presence of 4‐aminopyridine derivatives. Upon heating 1 at 180 °C, it underwent the thermally induced ring‐opening polymerization. The resulting polymer was composed of two types of repeating unit, i.e., (1) Mannich‐type one (‐phenol‐CH2‐NR‐CH2‐) that can be expected from the general ring‐opening polymerization of conventional benzoxazines and (2) a typical phenolic resin‐type one (‐phenol‐CH2‐phenol‐) induced by release of 4‐aminopyridine and paraformaldehyde (unit B). Another structural feature of the polymer was that it possessed a benzoxazine moiety at the chain end. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 410–416  相似文献   

6.
Three aromatic diamine‐based, phosphinated benzoxazines ( 7–9 ) were prepared from three typical aromatic diamines—4,4′‐diamino diphenyl methane ( 1 ), 4,4′‐diamino diphenyl sulfone ( 2 ), and 4,4′‐diamino diphenyl ether ( 3 ) by a one‐pot procedure. To clarify the reaction mechanism, a two‐pot procedure was applied, in which the reaction intermediates ( 4–6 ) were isolated for characterization. The structures of intermediates and benzoxazines were confirmed by high resolution mass, IR, and 1D and 2D‐NMR spectra. In addition to self‐polymerization, ( 7–9 ) were copolymerized with cresol novolac epoxy (CNE). After curing, the homopolymers of P( 7–9 ) are brittle while the copolymers of ( 7–9 )/CNE are tough. Dynamic mechanical analysis shows the Tgs of ( 7–9 )/CNE copolymers are 187, 190, and 171 °C, respectively. Thermal mechanical analysis shows the CTEs of ( 7–9 )/CNE copolymers are 46, 38, and 46 ppm, respectively. All the ( 7–9 )/CNE copolymers belong to an UL‐94 V‐0 grade, demonstrating good flame retardancy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
We describe a new strategy for preparation of benzoxazine monomers based on in situ preparation of a thiol‐functionalized benzoxazine and successive chemical modification of the thiol moiety. The thiol‐functionalized benzoxazine can be prepared from its precursor bearing two benzoxazine moieties linked by disulfide bond. Reductive cleavage of the disulfide bond of the precursor with using triphenylphosphine as a reducing agent allows successful preparation of the thiol‐functionalized benzoxazine. By performing this reduction process in the presence of epoxides and acrylates, the formation of the thiol moiety and its successive reaction with those electrophiles proceed efficiently to give the corresponding benzoxazines with sulfide moieties. The benzoxazine monomers thus prepared exhibit much higher polymerization ability than those without sulfide moiety. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1448–1457  相似文献   

8.
A siloxane‐containing diphenol is synthesized from 1,1,3,3‐tetramethyldisiloxane and o‐allylphenol, followed by the Mannich condensation with aniline, methylamine, and formaldehyde yielding two siloxane‐containing benzoxazines. The onset polymerization temperature of aniline‐based benzoxazine is higher than that of the methylamine counterpart. The dynamic mechanical properties of the polybenzoxazines depend on the structure of the starting primary amines. Both polybenzoxazines exhibit one‐way dual‐shape memory behavior in response to changes in temperature, and they show excellent shape fixity ratios in bending, tension, and tensile stress–strain tests, high shape recovery ratios in bending and tension tests, but relatively low shape recovery ratios in tensile stress–strain test. The network chain segments including the alkylsiloxane units serve as a thermal control switch based on the glass transition temperatures (39 and 53 °C) for the polybenzoxazines. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1255–1266  相似文献   

9.
We report our work for preparing cross‐linked polyimide via a series of imide functional benzoxazine resins as precursors. The structures of synthesized monomers have been confirmed by 1H NMR and FT‐IR. Among this class of benzoxazine monomers, the ortho‐imide functional benzoxazine resins show useful features both in the synthesis of benzoxazine monomers and the properties of the corresponding thermosets. For the cross‐linked polyimides based on ortho‐imide functional benzoxazine, an additional route is adopted to form a more thermally stable cross‐linked polybenzoxazole with the release of carbon dioxide. The ortho‐imide functional benzoxazine resins show the possibility to form high performance and even super high performance thermosets with low cost and easy processability. The thermal properties are evaluated by DSC and TGA. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1330–1338  相似文献   

10.
Coumarins are used as a natural renewable resource to synthesize coumarin‐containing benzoxazine resins. The coumarin‐containing benzoxazines are fully characterized in terms of their chemical structure by Fourier‐transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. The influence of electronic effects caused by the substituents on the polymerization temperature is also evaluated. Thermal properties of the resulting thermosets are characterized by differential scanning calorimetry and thermogravimetric analysis, showing good stability and char yields higher than 50%. The coumarin‐containing polybenzoxazine thermosets show Tg values in the range between 160 and 190 °C. Thus, the herein presented coumarin‐containing benzoxazine resins are proven to be competitive monomers when compared with other petroleum‐based benzoxazine resins toward the generation of high‐performance thermoset. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1428‐1435  相似文献   

11.
Three fluorinated benzoxazines ( 14–16 ), which cannot be synthesized by the traditional one‐step approaches, were synthesized by a three‐step procedure using fluorinated aromatic diamines ( 2–4 ) as starting materials. The structures of the monomers were confirmed by 1H NMR, IR, and high‐resolution mass spectra. The low dielectric thermosets, P( 14–16 ), were prepared by ring‐opening of ( 14–16 ). IR analysis was utilized to monitor the ring‐opening reaction of ( 14–16 ) and to propose the structures of P( 14–16 ). The thermal and dielectric properties of P( 14–16 ) were studied and compared with a nonfluorinated polybenzoxazine P( 13 ), which is derived form the ring‐opening of 2,2‐bis(4‐aminophenoxy)phenyl)propane ( 1 ). Besides, the structure–property relationship of the P( 13–16 ) is discussed. According to Tg measurement, the ortho‐positioned CF3 substituents impart greater steric hindrance for ring‐opening of benzoxazines than CF3 substituents of hexafluoropropane. Incorporating a biphenol F‐based benzoxazine, ( F‐a ), into fluorinated benzoxazines ( 15–16 ) can dilute the effect of ortho‐positioned CF3 substituents on steric hindrance, leading to a higher crosslinking density and consequently a higher Tg. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4970–4983, 2008  相似文献   

12.
A novel benzoxazine‐containing benzimidazole moiety (P‐PABZ) was synthesized from 2‐(4‐aminophenyl)‐1H‐benzimidazole‐5‐amine and characterized. With the aid of differential scanning calorimetry and in situ Fourier transform infrared, we found the thermal polymerization of P‐PABZ in bulk started around 140 °C and its favored polymerization pathway. Compared to the benzoxazine derived from 4,4′‐diamine diphenyl methane (P‐MDA), P‐PABZ exhibited lower processing temperature, and the corresponding polymers had higher glass transition temperature and enhanced thermal stability. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Aside from their outstanding properties such as thermal and chemical stability and excellent mechanical performance, benzoxazines suffer from high polymerization temperatures. Isomeric mixtures of bifunctional benzoxazines based on resorcinol proved already to be highly reactive monomers enabling polymerizations at lower temperatures. This contribution describes the polymerization behavior of single benzoxazine isomers and furthermore the influence of different substituents at the aniline moiety on the curing temperature. Single isomers of bifunctional benzoxazines are now accessible in a straightforward one‐pot synthesis starting from resorcinol and the appropriate N‐phenyl functionalized aniline component. The asymmetric benzoxazine monomers bearing no (R‐a: Tpeak = 179 °C) or electron‐donating substituents in meta position to N (R‐3,5dma: Tpeak = 183 °C) succeed in lowering the polymerization temperature. Additionally, the impact of several initiating systems was studied resulting in a decrease of the polymerization temperature for all studied resorcinol derived benzoxazine isomers (down to 144 °C). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1243–1251  相似文献   

14.
3‐Phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine ( m 1 ) underwent cationic ring opening polymerization using BF3·OEt2 in alcoholic solution under mild conditions. The polymerization of m 1 proceeds through an intermediate hemiaminal ether leading mainly to the formation of polybenzoxazines with diphenylmethane bridges, and not only the classical Mannich‐type ones. During the first stages of the reaction, low‐molecular weight soluble oligomers containing benzoxazine rings are formed. At longer polymerization times, the propagation proceeds conventionally through the phenolic active sites. This polymerization mechanism is extensible to other substituted 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazines but fails in the case of 3‐alkyl‐3,4‐dihydro‐2H‐1,3‐benzoxazines or when the phenyl group in Position 3 have a substituent in the p‐position. Spectroscopic studies and kinetic experiments using model reactions and deuterium labeled benzoxazines, allow proposing a plausible different polymerization mechanism. These soluble benzoxazine‐containing polymers can be conveniently processed and impregnated on appropriate substrates before underwent crosslinking producing materials with comparable properties to those of conventional bis‐benzoxazines. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5075–5084  相似文献   

15.
Microwave‐assisted organic synthesis (MAOS) is a well‐established technique that has been used in the enhancement of chemical reactions. Here, the versatility of MAOS is explored describing an environmentally friendly one‐pot route to novel bio‐based benzoxazines under solvent‐free conditions. The lignin derivative, guaiacol, along with paraformaldehyde and different conjugated and nonconjugated amines are successfully fused into guaiacol‐derived 3,4‐dihydro‐2H‐1,3‐benzoxazines. The reactions conducted under microwave irradiation are completed much faster than those under traditional heating, reducing the reaction time from hours to only 6 min, with good yields. The chemical structures of novel benzoxazines are confirmed by 1H and 13C NMR spectroscopy, FTIR, and HR‐MS. The thermal behavior of the resins are evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), showing that these polymers have good thermal stability and wide processing‐window, with onset temperature of polymerization above 230 °C. These results indicate dramatic improvement over the traditional methodologies for the production of this class of resins, which are usually obtained by time‐consuming procedures and in the presence of toxic solvents. Therefore, MAOS can be considered a green and efficient strategy for the synthesis of eco‐friendly benzoxazines. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3534–3544  相似文献   

16.
We prepared an octa maleimido functionalized POSS, namely octa(maleimido phenyl) silsesquioxane (OMPS)-reinforced polybenzoxazine hybrid nanocomposites, by using four different types of benzoxazines (BZ-Cy-DDM, BZ-Cy-DDE, BZ-Cy-DDS, and BZ-Cy-Ani). They were synthesized from 1,1-bis(3-methyl-4-hydroxyphenyl) cyclohexane, paraformaldehyde, and aromatic amines (4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylether, 4,4′-diaminodiphenylsulphone, and aniline) by the Mannich reaction. We used 10 wt.% OMPS in all four polybenzoxazine matrices in order to compare the effect of OMPS on various benzoxazines. They were polymerized through thermal ring-opening polymerization at identical conditions. The thermal properties of the resulting OMPS-reinforced polybenzoxazine hybrid nanocomposites were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The dispersion of OMPS in the polybenzoxazine and nanostructure of the composites were confirmed by X-ray diffraction analysis, transmission electron microscopy, and atomic force microscopy.  相似文献   

17.
A series of fluorene‐based benzoxazine copolymers were synthesized from the mixture of 9,9‐bis(4‐hydroxyphenyl)fluorene and bisphenol A, and 4,4′‐diaminodiphenyloxide and paraformaldehyde. And the cured polybenzoxazine films derived from these copolymers were also obtained. Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonances confirmed the structure of these benzoxazines. Their molecular weight was estimated by gel permeation chromatography. The curing behavior of the precursors was monitored by FTIR and differential scanning calorimetry. Dynamic mechanical analysis and thermogravimetric analysis were performed to study the thermal properties of the cured polymers. The cured polybenzoxazines exhibit excellent heat resistance with glass transition temperatures (Tg) of 286–317°C, good thermal stability along with the values of 5% weight loss temperatures (T5) over 340°C, and high char yield over 50% at 800°C. The mechanical properties of the cured polymers were also measured by bending tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The industrial applications of benzoxazines are limited due to their high curing temperatures. This drawback can be overcome by more reactive precursor compared to conventional benzoxazines or by application of efficient initiators. We report the synthesis of a new resorcinol‐based benzoxazine and its cationic polymerization with thermolatent super acids, namely organic sulfonium hexafluoroantimonates. This combination of a reactive precursor and an efficient initiator results in a curing temperature below 100 °C (differential scanning calorimetry onset) which is up to now one of the lowest polymerization temperatures for benzoxazine systems. Furthermore, the thermal stability of the formed polybenzoxazine has not been influenced by the applied initiators. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1693–1699  相似文献   

19.
A phenol/aniline type monofunctional benzoxazine monomer, PH‐a , is synthesized and highly purified to study the intrinsic thermal ring‐opening polymerization of benzoxazines without the influence of any impurity. The successful synthesis of the monomer and its corresponding chemical structure are confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. Purity of the compound is evaluated through differential scanning calorimetry (DSC) as well as elemental analysis (EA). Moreover, the thermal behavior of benzoxazine monomer toward polymerization is also studied by DSC, indicating that the highly purified benzoxazine monomer actually polymerize upon heating. The results present evidence of an intrinsic tendency for 1,3‐benzoxazines to undergo thermally induced ring‐opening polymerization upon heating only without any impurity participating during the reaction. This reveals that polybenzoxazines can be obtained by both the traditional thermally accelerated (or activated) polymerization, where impurities or purposefully added initiators are involved in the reaction; or, by the classic thermal polymerization, where only heat is enough to initiate the reaction. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3434–3445  相似文献   

20.
To evaluate the influence of the electronic effects on the polymerization temperature, we looked at several 3‐phenyl‐3,4‐dihydro‐2‐H‐1,3‐benzoxazine monomers with electron‐withdrawing or electron‐donating groups in the 6 and 4′ positions. The monomers were synthesized and characterized using different synthetic methods to achieve the best possible results. The thermal polymerization of these benzoxazine monomers was analyzed by differential scanning calorimetry, and the polymerization behavior and the polymer characteristics were related to the electronic character of the substituent and the polymerization mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3353–3366, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号