首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
A series of 1,3‐bis(2′‐hydroxyethyl)imidazolium ionic liquids is reported where 1H NMR chemical shift values and thermal stabilities (Td), as determined by thermogravimetric analysis, are correlated with the hydrogen bonding capability of various anions ([Cl?], [Br?], [CF3CO2?], [NO2?], [MsO?], [NO3?], [TfO?], [BF4?], [NTf2?], and [PF6?]). Use of anions with the strongest hydrogen bonding capability, such as chloride [Cl?], bromide [Br?], and trifluoroacetate [CF3CO2?], led to the furthest observed downfield chemical shift values in DMSO‐d6 and the poorest thermal stabilities ([CF3CO2?] < 200 °C). Thermal stabilities in excess of 350 °C and upfield chemical shift values were observed for ionic liquids, which employed the weakly coordinating triflate [OTf?], tetrafluoroborate [BF4?], or bis(trifluoromethylsulfonyl)imide [NTf2?] anion. Optimized structures of selected ionic liquids, as determined by density functional theory calculations at the B3LYP/6‐31G + (d,p) level, indicated that the anion preferred to be located above the imidazolium ring and in close proximity to the hydroxyl groups. Calculated dissociation energies (ΔE) and a comparison of key bonding distances (C2―H, (C2)H···X, O―H, and (O)H···X) also confirmed this structural preference. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In the present work, we theoretical study the sensing mechanism of a new fluoride chemosensor (E)‐2‐(2‐(dimethylamino)ethyl)‐6‐(4‐hydroxystyryl)‐1H‐benzo[de]‐isoquinoline‐1,3(2H)‐dione (the abbreviation is NIM ). Based on density functional theory and time‐dependent density functional theory methods, the fluoride anion response mechanism has been confirmed via constructing potential energy curve. The exothermal deprotonation process along with the intermolecular hydrogen bond O–H···F reveals the uniqueness of detecting F?. After capturing hydrogen proton forming NIM‐A anion configuration, a new absorption peak around 655 nm appears in dimethyl sulfoxide solvent. In addition, the emission of NIM can be quenched when adding F? has been also confirmed. Due to the twisted intramolecular charge transfer character NIM‐A‐S 1 form, we further verify the experimental phenomenon. The theoretical electronic spectra (vertical excitation energies and fluorescence peak) reproduced previous experimental results (ACS Appl. Mater. Interfaces 2014, 6, 7996), which not only reveals the rationality of our theoretical level used in this work but also confirms the correctness of geometrical attribution. In view of the excitation process, the strong intramolecular charge transfer process of S0 → S1 transition explain the redshift of absorption peak for NIM with the addition of fluoride anion. This work presents a straightforward sensing mechanism (deprotonation process) of fluoride anion for the novel NIM chemosensor.  相似文献   

3.
A new derivative of the previously reported 1,2‐bis(benzimidazol‐2‐yl)ethane motif, cation [1H2]2+, was synthesized under microwave irradiation and fully characterized by solution NMR, high‐resolution mass spectrometry, cyclic voltammetry and X‐ray crystallography. This cation presents a linear geometry and incorporates nitro substituents as electrochemical handles. In solution, cation [1H2]2+, is capable of threading the cavity of dibenzo‐24‐crown‐8 ether host (DB24C8) giving rise to a [2]pseudorotaxane complex [1H2?DB24C8]2+, regardless of the counterion, [CF3SO3]? or [CF3COO] ?. The interpenetrated structure of [1H2?DB24C8]2+ was proven by solution NMR and X‐ray crystallography. This host–guest complex is held together by several non‐covalent interactions, such as hydrogen bonding and ion‐dipole. An electrochemical study of [1H2]2+ in the presence of variable amounts of DB24C8 was performed; due to the irreversible redox behavior of cation [1H2]2+, it was not possible to electrochemically control the association/dissociation process with DB24C8. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Based on energetic compound [1,2,5]‐oxadiazolo‐[3,4‐d]‐pyridazine, a series of functionalized derivatives were designed and first reported. Afterwards, the relationship between their structure and performance was systematically explored by density functional theory at B3LYP/6‐311 g (d, p) level. Results show that the bond dissociation energies of the weakest bond (N–O bond) vary from 157.530 to 189.411 kJ · mol?1. The bond dissociation energies of these compounds are superior to that of HMX (N–NO2, 154.905 kJ · mol?1). In addition, H1, H2, H4, I2, I3, C1, C2, and D1 possess high density (1.818–1.997 g · cm?3) and good detonation performance (detonation velocities, 8.29–9.46 km · s?1; detonation pressures, 30.87–42.12 GPa), which may be potential explosives compared with RDX (8.81 km · s?1, 34.47 GPa ) and HMX (9.19 km · s?1, 38.45 GPa). Finally, allowing for the explosive performance and molecular stability, three compounds may be suggested as good potential candidates for high‐energy density materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
To explore the possibility of hydrogen bonding of a stable anion radical with DNA – component sugar, hormones, steroid, and so on (through hydroxyl group), as a first step, the possibility of hydrogen bonding of 1,3‐dinitrobenzene anion radical (1,3‐DNB??) with aliphatic alcohols was studied. It was found that 1,3‐DNB?? anion radical undergoes hydrogen bonding with alcohols: methanol, ethanol, and 2‐proponal. The hydrogen‐bonding equilibrium constant Keq and the (hydrogen‐bonding) rate constants k2 were evaluated through the use of linear scan and cyclic voltammetry theory and techniques. The Keq was found to be in the range of 1.4–6.0 m ?1, whereas the rate constants k2 were found to be in the range of 1.5–3.6 m ?1 s?1, depending upon the hydrogen‐bonding agent and the equation used for the calculation of the rate constants. The hydrogen‐bonding number n was found to be around 0.5 or 1.0. The implication of this study in, for example, the replication of DNA, the prevention of the formation of super oxide, and so on is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The existence of C–H···F–C hydrogen bonds in the complexes of trifluoromethane and cyclic molecule (oxirane, cyclobutanone, dioxane, and pyridine) has been experimentally proven by Caminati and co-workers. This study presents a theoretical investigation on these C–H···F–C hydrogen bonds at B97D/6-311++G** and MP2/6-311++G** levels, in terms of C–H vibrational frequency shifts, atoms in molecules characteristics, and the bonding feature of C–H···F–C hydrogen bonds. It is found that in three important aspects, there are significant differences in properties between C–H···F–C and conventional hydrogen bonds. The C–H···F–C hydrogen bonds show a blueshift in the C–H vibrational frequencies, instead of the X–H normal redshift in X–H···Y conventional hydrogen bonds. The natural bond orbital (NBO) analyses show that σ and p types of lone pair orbitals of the F atom to an antibonding σ*H–C orbital form a dual C–H···F–C hydrogen bond. Such a dual hydrogen bonding leads to the proton acceptor directionality of the C–H···F–C hydrogen bond softer. Our studies also show that the Laplacian of the electron density (▽2ρBCP) is not always a good criterion for hydrogen bonds. Therefore, we should not recommend the use of the Laplacian of the electron density as a criterion for C–H···F–C hydrogen bonds.  相似文献   

7.
The time‐dependent density functional theory (TDDFT) method was performed to investigate the excited‐state hydrogen bonding dynamics of 4‐amino‐1,8‐naphthalimide (4ANI) as hydrogen bond acceptor in hydrogen donating methanol (MeOH) solvent. The ground‐state geometry optimizations, electronic transition energies and corresponding oscillation strengths of the low‐lying electronically excited states for the isolated 4ANi and hydrogen‐bonded 4ANi‐(MeOH)1,4 complexes were calculated by the DFT and TDDFT methods, respectively. We demonstrated that the intermolecular hydrogen bond C═O···H–O and N–H···O–H in the hydrogen‐bonded 4ANi‐(MeOH)1,4 is strengthened in the electronically excited state, because the electronic excitation energies of the hydrogen‐bonded complex are correspondingly decreased compared with that of the isolated 4ANi. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electronically excited state of fluorescent dye in hydrogen‐donating solvents exists in many other systems in solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The molecular structures and vibrational properties of 1H‐imidazo[4,5‐b]pyridine in its monomeric and dimeric forms are analyzed and compared to the experimental results derived from the X‐ray diffraction (XRD), infrared (IR), and Raman studies. The theoretical data are discussed on the basis of density functional theory (DFT) quantum chemical calculations using Lee–Yang–Parr correlation functional (B3LYP) and 6‐31G(d,p) basis. This compound crystallizes in orthorhombic structure, space group Pna21(C2v9) and Z = 4. The planar conformation of the skeleton and presence of the N H···N hydrogen bond was found to be characteristic for the studied system. The temperature dependence of IR and Raman modes was studied in the range 4–294 K and 8–295 K, respectively. The normal modes, which are unique for the imidazopyridine derivatives are identified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
As a probe of local structure, the vibrational properties of the 1‐butyl‐3‐methylimidazolium tetrafluoroborate [bmim][BF4] ionic liquid were studied by infrared (IR), Raman spectroscopy, and ab initio calculations. The coexistence of at least four [bmim]+ conformers (GG, GA, TA, and AA) at room temperature was established through unique spectral responses. The Raman modes characteristic of the two most stable [bmim]+ conformers, GA and AA, according to the ab initio calculations, increase in intensity with decreasing temperature. To assess the total spectral behavior of the ionic liquid both the contributions of different [bmim]+ conformers and the [bmim]+− [BF4] interactions to the vibrational spectra are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The density functional theory was used to investigate the interactions between 1‐ethyl‐3‐methylimidazolium chloride ([EMIM]Cl) and benzene/pyridine/pyrrole/thiophene. The complexes formed between [EMIM]Cl and benzene/pyridine/pyrrole/thiophene were optimized at the ωB97XD/6‐31++G** level, and the optimized complexes were further analyzed by natural bond orbital, atoms in molecules, and noncovalent interaction. The calculated results show that the interaction energy between ionic liquid and benzene/pyridine/pyrrole/thiophene is in the order pyrrole > pyridine > thiophene > benzene. The major interactions between ionic liquid and benzene/pyridine/pyrrole/thiophene are hydrogen bonding and π‐π interaction, accompanied by C···H, N···H, H···H, and S···H weak interactions. Both cation and anion of ionic liquid are involved in interactions with aromatic compounds.  相似文献   

11.
Vibrational spectral analysis was carried out for 4‐methoxy‐2‐methyl benzoic acid (4M2MBA) by using Fourier transform infrared (FT‐IR) (solid, gas phase) and FT‐Raman spectroscopy in the range of 400–4000 and 10–3500 cm−1 respectively. The effects of molecular association through O H···O hydrogen bonding have been described by the single dimer structure. The theoretical computational density functional theory (DFT) and Hatree‐Fock (HF) method were performed at 6–311++G(d,p) levels to derive the equilibrium geometry, vibrational wavenumbers, infrared intensities and Raman scattering activities. The scaled theoretical wavenumbers were also shown to be in good agreement with experimental data. The first‐order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of 4M2MBA are calculated using the B3LYP/cc‐pvdz basis set, based on the finite‐field approach. A detailed interpretation of the infrared and Raman spectra of 4M2MBA is reported. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule were also constructed and compared with the experimental one. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The Raman spectra of (1 − x)(BMITFSI), xLiTFSI ionic liquids, where 1‐butyl‐3‐methylimidazolium cation (BMI+) and bis(trifluoromethane‐sulfonyl)imide anion (TFSI) are analyzed for LiTFSI mole fractions x < 0.4. As expected from previous studies on similar TFSI‐based systems, most lithium ions are shown to be coordinated within [Li(TFSI)2] anionic clusters. The variation of the self‐diffusion coefficients of the 1H, 19F, and 7Li nuclei, measured by pulsed‐gradient spin‐echo NMR (PGSE‐NMR) as a function of x, can be rationalized in terms of the weighted contribution of BMI+ cations, TFSI ‘free’ anions, and [Li(TFSI)2] anionic clusters. This implies a negative transference number for lithium. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The complex formation of bis(18‐crown‐6)stilbene ( 1 ) and its supramolecular donor‐acceptor complex with N,N′‐bis(ammonioethyl) 1,2‐di(4‐pyridyl)ethylene derivative ( 2 ) with alkali and alkaline‐earth metal perchlorates has been studied using absorption, steady‐state fluorescence, and femtosecond transient absorption spectroscopy. The formation of 1 ?Mn+ and 1 ?(Mn+)2 complexes in acetonitrile was demonstrated. The weak long‐wavelength charge‐transfer absorption band of 1 · 2 completely vanishes upon complexation with metal cations because of disruption of the pseudocyclic structure. The spectroscopic and luminescence parameters, stability constants, and 2‐stage dissociation constants were calculated. The initial stage of a recoordination process was found in the excited complexes 1 ?M+ and 1 ?(M+)2 (M = Li, Na). The pronounced fluorescence quenching of 1 · 2 is explained by very fast back electron transfer (τet = 0.397 ps). The structure of complex 1 · 2 was studied by X‐ray diffraction; stacked ( 1 · 2 )m polymer in which the components were connected by hydrogen bonding and stacking was found in the crystal. These compounds can be considered as novel optical molecular sensors for alkali and alkaline‐earth metal cations.  相似文献   

14.
The effects of substituents on the stability of 3‐substituted(X) bicyclo[1.1.1]pent‐1‐yl cations (3) and 4‐substituted(X) bicyclo[2.2.1]hept‐1‐yl cations (4), for a set of substituents (X = H, NO2, CN, NC, CF3, CHO, COOH , F, Cl, HO, NH2, CH3, SiH3, Si(CH3)3, Li, O?, and NH3+) covering a wide range of electronic substituent effects were calculated using the DFT theoretical model at the B3LYP/6‐311 + G(2d,p) and B3LYP/6‐31 + G (d) levels of theory, respectively. Linear regression analysis was employed to explore the relationship between the calculated relative hydride affinities (ΔE, kcal/mol) of the appropriate isodesmic reactions for 3/4 and polar field/group electronegativity substituent constants (σF and σχ, respectively). The analysis reveals that the ΔE values for both systems are best described by a combination of both substituent constants. The result highlights the importance of the σχ dependency of charge delocalization in these systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The pKas of 3‐pyridylboronic acid and its derivatives were determined spectrophotometrically. Most of them had two pKas assignable to the boron center and pyridine moiety. The pKa assignment performed by 11B nuclear magnetic resonance spectroscopy revealed that both boron centers in 3‐pyridylboronic acid [3‐PyB(OH)2] and the N‐methylated derivative [3‐(N‐Me)Py+B(OH)2] have strong acidities (pKa = 4.4 for both). It was found that introduction of a substituent to pyridine‐C atom in 3‐pyridylboronic acid drastically increased the acidity of the pyridinium moiety, but decreased the acidity of the boron center, whereas the introduction to pyridine‐N atom had no influence on the acidity of the boron center. Kinetic studies on the complexation reactions of 3‐pyridinium boronic acid [3‐HPy+B(OH)2] with 4‐isopropyltropolone (Hipt) carried out in strongly acidic aqueous solution indicated that the positive charge on the boronic acid influenced little on its reactivity; 3‐HPy+B(OH)2 reacts with Hipt and protonated H2ipt+, and its reactivity was in line with those of a series of boronic acids. Kinetics in weakly acidic aqueous solution revealed that 3‐HPy+B(OH)2 reacts with Hipt faster than its conjugate boronate [3‐HPy+B(OH)3], which is consistent with our recent results. The reactivity of 3‐(N‐Me)Py+B(OH)2 towards Hipt was also examined kinetically; the reactivities of 3‐(N‐Me)Py+B(OH)2 and 3‐(N‐Me)Py+B(OH)3 are almost the same as those of their original 3‐HPy+B(OH)2 and 3‐HPy+B(OH)3, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Persistent carbocations generated by the protonation of hetero‐polycyclic aromatic compounds with oxygen atom(s) were studied by experimental NMR and density function theory calculations. Benzo[kl]xanthene ( 1 ), dibenzo[d,d′]benzo[1,2‐b:4,3‐b′]difuran ( 2 ), and dibenzo[d,d′]benzo[1,2‐b:4,5‐b′]difuran ( 3 ) were synthesized by the annulation of arenediazonium salts. Compound 1 in FSO3H‐SbF5 (4:1)/SO2ClF and 3 in FSO3H‐SbF5 (1:1)/SO2ClF ionized to 1aH+ with protonation at C(4) and to 3aH+ with protonation at C(6), and these cations were successfully observed by NMR at low temperatures. The density function theory calculations indicated that 1aH+ and 3aH+ were the most stable protonated carbocations and that 2 should ionize to 2aH+ with protonation at C(6). According to the changes in 13C chemical shifts (Δδ13C), the positive charge was delocalized into the naphthalene unit for 1aH+ , into one benzo[b,d]furan unit for 2aH+ , and into one benzo[b,d]furan unit for 3aH+ . Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The experimental and theoretical study on the structures and vibrations of 5‐fluoro‐salicylic acid and 5‐chloro‐salicylic acid (5‐FSA and 5‐ClSA, C7H5FO3 and C7H5ClO3) is presented. The Fourier transform infrared spectra (4000–400 cm−1) and the Fourier transform Raman spectra (4000–50 cm−1) of the title molecules in the solid phase were recorded. The molecular structures, vibrational wavenumbers, infrared intensities, Raman intensities and Raman scattering activities were calculated for a pair of molecules linked by the intermolecular O H···O hydrogen bond. The geometrical parameters and energies of 5‐FSA and 5ClSA were obtained for all eight conformers/isomers from density functional theory (DFT) (B3LYP) with 6‐311++G(d,p) basis set calculations. The computational results identified the most stable conformer of 5‐FSA and 5‐ClSA as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The spectroscopic and theoretical results were compared with the corresponding properties for 5‐FSA and 5‐ClSA monomers and dimer of C1 conformer. The optimized bond lengths, bond angles and calculated wavenumbers showed the best agreement with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this report, we extended the works of Rizzato et al. [Angew. Chem. Int. Ed. 49, 7440 (2010)] on the nature of O–H···Pt hydrogen bond in trans-[PtCl2(NH3)(N–glycine)]·H2O(1·H2O) complex, by computational study of O–H···Pt interaction in [NBu4][Pt(C6F5)3(8-hydroxyquinaldine)], with emphasis on charge transfer effect in this interaction of platinum(II) and hydrogen atom. According to the crystallographic geometry reported by José María Casas et al., [NBu4][Pt(C6F5)3(8-hydroxyquinaldine)] possesses one O–H···Pt hydrogen bridging interaction, similar to the case in trans-[PtCl2(NH3)(N–glycine)]·H2O(1·H2O) complex. On the basis of topological criteria of electron density, we characterised this O–H···Pt interaction. Charge transferred between platinum(II) and σ*O–H orbital in this complex was calculated by using NBO method. The stabilised energy associated to charge transfer was estimated using a direct proportionality, that is 2–3 eV per electron transferred. Charge transfer effects in O–H···Pt hydrogen bonds were studied for these two complexes. Our results indicate that the interaction of O–H···Pt is closed–shell in nature with significant charge transfer, and that charge transfer effect is not negligible in the interaction of O–H···Pt. The second conclusion is different from the result of Rizzato et al.  相似文献   

19.
In this paper we investigate the solvation of silver bis(trifluoromethylsulfonyl)imide salt (AgTFSI) in 1‐ethyl‐3‐methylimidazolium TFSI [EMI][TFSI] ionic liquid by combining Raman and infrared (IR) spectroscopies with density functional theory (DFT) calculations. The IR and Raman spectra were measured in the 200–4000 cm−1 spectral region for AgTFSI/[EMI][TFSI] solutions with different concentrations ([AgTFSI] <0.2 mole fraction). The analysis of the spectra shows that the spectral features observed by dissolution of AgTFSI in [EMI][TFSI] solution originate from interactions between the Ag+ cation and the first neighboring TFSI anions to form relatively stable Ag complexes. The ‘gas phase’ interaction energy of a type [Ag(TFSI)3]2− complex was evaluated by DFT calculations and compared with other interionic interaction energy contributions. The predicted spectral signatures because of the [Ag(TFSI)3]2− complex were assessed in order to interpret the main IR and Raman spectral features observed. The formation of such complexes leads to the appearance of new interaction‐induced bands situated at 753 cm−1 in Raman and at 1015 and 1371 cm−1 in IR, respectively. These specific spectral signatures are associated with the ‘breathing’ mode and the S–N–S and S–O stretching modes of the TFSI anions engaged in the complex. Finally, all these findings are discussed in terms of interaction mechanisms enabling the electrodeposition characteristics of silver from AgTFSI/[EMI][TFSI] IL‐based electrolytic solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
X‐ray diffraction (XRD) studies have shown that 2‐piperidyl‐5‐nitro‐6‐methylpyridine, C11H15N3O2, undergoes a structural phase transition at T = 240 K. The room temperature structure is tetragonal, space group I41/a, with the unit‐cell dimensions a = 13.993(2) and c = 23.585(5) Å. The pyridine ring takes trans conformation with respect to the piperidine unit. While pyridine is well ordered, the piperidine moiety shows apparent disorder resulting from a libration about the linking N C bond. The low‐temperature phase is monoclinic, space group I2/a. Contraction of the unit‐cell volume by 2.3% at 170 K enables the C H···O linkage between the molecules of the neighbouring stacks. As result, the asymmetric unit becomes bi‐molecular. The thermal librations of the piperidine and methyl groups become considerably reduced at 170 K and nearly fully reduced at about 100 K. The IR spectra and polarised Raman spectra agree with the X‐ray structure and confirm the disorder effect on the piperidine ring. The assignment of the bands observed was made on the basis of DFT chemical quantum calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号