共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(styrene‐maleic anhydride)‐montmorillonite nanocomposites were prepared by intercalation of layered montmorillonite with the polymer ions. Synthetic approaches including polymerization and phosphonium salt formation have been used for polymer intercalation and dispersion of the host layers in the polymer matrix. The ratio of the mineral in the composites ranged 30–50%. Wide‐angle X‐ray diffraction (WAXD) disclosed that the d(001) spacing between the internal lamellar surface were only expanding to about 13 and 15 Å according to the type of phosphonium salt suggesting packing of polymer molecules between the layers. Examination of these materials by scanning and transmission electron microscopy showed spherical nano size particles of average diameter, 350 nm. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
2.
Venkata Ashok Kothapalli Manasa Shetty Christopher de los Santos Christopher E. Hobbs 《Journal of polymer science. Part A, Polymer chemistry》2016,54(1):179-185
The use of a thio‐bromo click strategy as an efficient postpolymerization tool is described. Norbornene derivatives bearing an α‐bromo ester could be polymerized using Grubbs 2nd generation initiator to provide α‐bromo ester‐containing homo‐and block copolymers that could be efficiently functionalized through reactions with various thiols. A one‐pot strategy was also used, in which up to four different thiols were reacted simultaneously. This chemistry could also be used as an efficient cross‐linking strategy to form ROMP‐based gels as well as a tool for terminal functionalization of polypropylene‐based oligomers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 179–185 相似文献
3.
Vahik Krikorian Mary Kurian Mary E. Galvin Andrew P. Nowak Timothy J. Deming Darrin J. Pochan 《Journal of Polymer Science.Polymer Physics》2002,40(22):2579-2586
The feasibility of constructing polymer/clay nanocomposites with polypeptides as the matrix material is shown. Cationic poly‐L‐lysine · HBr (PLL) was reinforced by sodium montmorillonite clay. The PLL/clay nanocomposites were made via the solution‐intercalation film‐casting technique. X‐ray diffraction and transmission electron microscopy data indicated that montmorillonite layers intercalated with PLL chains coexist with exfoliated layers over a wide range of relative PLL/clay compositions. Differential scanning calorimetry suggests that the presence of clay suppresses crystal formation in PLL relative to the neat polypeptide and slightly decreases the PLL melting temperature. Despite lower crystallinity, dynamic mechanical analysis revealed a significant increase in the storage modulus of PLL with an increase in clay loading producing storage modulus magnitudes on par with traditional engineering thermoplastics. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2579–2586, 2002 相似文献
4.
Madhuchhanda Maiti Susmita Sadhu Anil K. Bhowmick 《Journal of Polymer Science.Polymer Physics》2004,42(24):4489-4502
In this work, preparation and properties of different nanoclays modified by organic amines (octadecyl amine, a primary amine, and hexadecyltrimethylammonium bromide, a tertiary amine) and brominated polyisobutylene‐co‐paramethylstyrene (BIMS)‐clay nanocomposites are reported. The clays and the rubber nanocomposites have been characterized with the help of Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The X‐ray diffraction peaks observed in the range of 3 °–10 ° for the modified clays disappear in the rubber nanocomposites. TEM photographs show predominantly exfoliation of the clays in the range of 12 ± 4 nm in the BIMS. In the FTIR spectra of the nanocomposites, there are common peaks of virgin rubber as well as those of the clays. Excellent improvement in mechanical properties like tensile strength, elongation at break, and modulus is observed on incorporation of the nanoclays in the BIMS. Structure‐property correlation in the above nanocomposites is attempted. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4489–4502, 2004 相似文献
5.
Mikko Karesoja Harri Jokinen Erno Karjalainen Petri Pulkkinen Mika Torkkeli Antti Soininen Janne Ruokolainen Heikki Tenhu 《Journal of polymer science. Part A, Polymer chemistry》2009,47(12):3086-3097
11‐(2‐Bromo‐2‐methyl)propionyl‐oxy‐undecyl trichlorosilane atom transfer radical polymerization (ATRP) initiator was covalently attached on montmorillonite clay platelets via silylation reactions. The initiator clay was used to polymerize butyl acrylate (BuA) and methyl methacrylate (MMA) on the clay surface. Polymerization was performed in bulk monomer solution or in DMSO. Polymer modified clay was mixed with a poly(BuA‐co‐MMA) matrix. Small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) showed that clay modified in DMSO gave exfoliated composites when mixed with the matrix copolymer. Mechanical properties of the composites were studied by dynamic mechanical thermal analysis (DMTA). The results showed that the mechanical properties were improved as a function of clay content, as well with an increasing homogeneity of the nanocomposite. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3086–3097, 2009 相似文献
6.
Giuliana Gorrasi Mariarosaria Tortora Vittoria Vittoria Giancarlo Galli Emo Chiellini 《Journal of Polymer Science.Polymer Physics》2002,40(11):1118-1124
The structural characterization and transport properties of blends of a commercial high molecular weight poly(?‐caprolactone) with different amounts of a montmorillonite‐poly(?‐caprolactone) nanocomposite containing 30 wt % clay were studied. Two different vapors were used for the sorption and diffusion analysis—water as a hydrophilic permeant and dichloromethane as anorganic permeant—in the range of vapor activity between 0.2 and 0.8. The blends showed improved mechanical properties in terms of flexibility and drawability as compared with the starting nanocomposites. The permeability (P), calculated as the product of the sorption (S) and the zero‐concentration diffusion coefficient (D0), showed a strong dependence on the clay content in the blends. It greatly decreased on increasing the montmorillonite content for both vapors. This behavior was largely dominated by the diffusion parameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1118–1124, 2002 相似文献
7.
Juan Zhou Shengwen Zhang Xiaoguang Qiao Xiaoqin Li Limin Wu 《Journal of polymer science. Part A, Polymer chemistry》2006,44(10):3202-3209
A series of SiO2/poly(styrene‐co‐butyl acrylate) nanocomposite microspheres with various morphologies (e.g., multicore–shell, normal core–shell, and raspberry‐like) were synthesized via miniemulsion polymerization. The results showed that the morphology of the composite latex particles was strongly influenced by the presence or absence of the soft monomer (butyl acrylate), the particle sizes of the silica, and the emulsifier concentrations. The incorporation of the soft monomer helped in forming the multicore–shell structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3202–3209, 2006 相似文献
8.
Ning Zhang Tilo Pompe Ihsan Amin Robert Luxenhofer Carsten Werner Rainer Jordan 《Macromolecular bioscience》2012,12(7):926-936
POx bottle‐brush brushes (BBBs) are synthesized by SIPGP of 2‐isopropenyl‐2‐oxazoline and consecutive LCROP of 2‐oxazolines on 3‐aminopropyltrimethoxysilane‐modified silicon substrates. The side chain hydrophilicity and polarity are varied. The impact of the chemical composition and architecture of the BBB upon protein (fibronectin) adsorption and endothelial cell adhesion are investigated and prove extremely low protein adsorption and cell adhesion on BBBs with hydrophilic side chains such as poly(2‐methyl‐2‐oxazoline) and poly(2‐ethyl‐2‐oxazoline). The influence of the POx side chain terminal function upon adsorption and adhesion is minor but the side chain length has a significant effect on bioadsorption.
9.
Fu‐Yun Huang Yu‐Zhong Wang Xiu‐Li Wang Ke‐Ke Yang Qian Zhou Song‐Dong Ding 《Journal of polymer science. Part A, Polymer chemistry》2005,43(11):2298-2303
Poly(p‐dioxanone) (PPDO)/montmorillonite nanocomposites were prepared through the in situ ring‐opening polymerization of p‐dioxanone (PDO) and three types of montmorillonites (natural sodium montmorillonite, montmorillonite modified by octadecyltrimethyl ammonium chloride, and montmorillonite modified by hydroxyethylhexadecyldimethyl ammonium bromine) in the presence of triethylaluminum. Montmorillonite could accelerate the polymerization of PDO, and the viscosity‐average molecular weight of PPDO could reach 44,900 g/mol in 0.5 h. A nucleating effect of montmorillonite was observed, and the crystallization temperature of PPDO was increased by 18 °C. All three montmorillonites could improve the thermal stability of PPDO and increase the glass‐transition and melting temperatures of PPDO. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2298‐2303, 2005 相似文献
10.
Cher H. Davis Lon J. Mathias Jeffrey W. Gilman David A. Schiraldi J. Randy Shields Paul Trulove Tom E. Sutto Hugh C. Delong 《Journal of Polymer Science.Polymer Physics》2002,40(23):2661-2666
Organically modified montmorillonite was synthesized with a novel 1,2‐dimethyl‐3‐N‐alkyl imidazolium salt or a typical quaternary ammonium salt as a control. Poly(ethylene terephthalate) montmorillonite clay nanocomposites were compounded via melt‐blending in a corotating mini twin‐screw extruder operating at 285 °C. The nanocomposites were characterized with thermal analysis, X‐ray diffraction, and transmission electron microscopy to determine the extent of intercalation and/or exfoliation present in the system. Nanocomposites produced with N,N‐dimethyl‐N,N‐dioctadecylammonium treated montmorillonite (DMDODA‐MMT), which has a decomposition temperature of 250 °C, were black, brittle, and tarlike resulting from DMDODA degradation under the processing conditions. Nanocomposites compounded with 1,2‐dimethyl‐3‐N‐hexadecyl imidazolium treated MMT, which has a decomposition temperature of 350 °C, showed high levels of dispersion and delamination. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2661–2666, 2002 相似文献
11.
Biqiong Chen Allen A. Bowden H. Chris Greenwell Pascal Boulet Peter V. Coveney Andrew Whiting Julian R. G. Evans 《Journal of Polymer Science.Polymer Physics》2005,43(14):1785-1793
Novel thermosetting poly[oligo(ethylene glycol) diacrylate]‐sodium montmorillonite nanocomposites containing a range of clay volume fractions were prepared by an in situ polymerization method. X‐ray diffraction showed that the basal plane spacing of the clay was increased to approximately 1.7 nm regardless of clay volume fraction. Transmission electron microscopy confirmed the basal spacing and intercalated structure. The elastic moduli of the composites were measured using ultrasonic pulse‐echo equipment. The results show that the Young's modulus and shear modulus increase with nominal clay volume fraction up to 0.22, and are in good agreement with the well‐established Christensen method and derived Hashin–Shtrikman bounds for conventional composites provided that the true volume fraction of clay reinforcement filler is calculated. At low clay volume fractions, the composites were transparent. When the nominal clay volume fraction was further increased, cracks and porous surfaces appeared, as observed by scanning electron microscopy. These defects decreased the elastic modulus, indicating an upper limit for clay additions in this preparation route. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1785–1793, 2005 相似文献
12.
Christian Kluger Wolfgang H. Binder 《Journal of polymer science. Part A, Polymer chemistry》2007,45(3):485-499
Block copolymers on basis of poly(oxanorbornenes) bearing functional moieties in their side‐chains are prepared via a combination of ROMP‐methods and 1,3‐dipolar‐“click”‐reactions. Starting from N‐substituted‐ω‐bromoalkyl‐oxanorbornenes and alkyl‐/perfluoroalkyl‐oxanorbornenes, block copolymers with molecular weights up to 25,000 g mol?1 were generated. Subsequent nucleophilic exchange‐reactions yielded the block‐copolymers functionalized with ω‐azidoalkyl‐moieties in one block. The 1,3‐azide/alkine‐“click” reactions with a variety of terminal alkynes in the presence of a catalyst system consisting of tetrakis(acetonitrile)hexafluorophosphate copper(I) and tris(1‐benzyl‐5‐methyl‐1H‐ [1,2,3]triazol‐4‐ylmethyl)‐amine furnished the substituted block copolymers in high yields, as proven by NMR‐spectroscopy. The resulting polymers were investigated via temperature‐dependent SAXS‐methods, revealing their microphase separated structure as well as their temperature‐dependent behavior. The presented method offers the generation of a large set of different block‐copolymers from only a small set of starting materials because of the high versatility of the “click” reaction, thus enabling a simple and complete functionalization after the initial polymerization reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 485–499, 2007 相似文献
13.
14.
PCL/clay nanocomposites were prepared by microwave‐assisted in situ ROP of ε‐caprolactone in the presence of either unmodified clay (Cloisite® Na+) or clay modified by quaternary ammonium cations containing hydroxyl groups (Cloisite 30B). This PCL showed significantly improved monomer conversion and molecular weight compared with that produced by conventional heating. An intercalated structure was observed for the PCL/Cloisite Na+ nanocomposites, while a predominantly exfoliated structure was observed for the PCL/Cloisite 30B nanocomposites. Microwave irradiation proved to be an effective and efficient method for the preparation of PCL/clay nanocomposites.
15.
Summary: Copper/poly(vinyl alcohol) (PVA) nanocables have been successfully obtained by electrospinning a PVA‐protected copper nanoparticle solution. The molar ratio of copper ions to PVA (in terms of VA repeating units) plays an important role in the formation of copper/PVA nanocables. The average diameter of the copper cores and PVA shells is about 100 and 400 nm, respectively. The structures of the copper/PVA nanocables are characterized by transmission electron microscopy (TEM) and their formation is confirmed by scanning electron microscopy (SEM).
16.
Prashant Deshmukh Hyeongho Yoon Seungwan Cho Sook Young Yoon Omkar V. Zore Taeyoon Kim Ildoo Chung Suk‐Kyun Ahn Rajeswari M. Kasi 《Journal of polymer science. Part A, Polymer chemistry》2017,55(20):3424-3433
We report the synthesis of linear‐ and brush‐type poly(?‐caprolactone) (PCL) networks and investigate their thermal, mechanical, and shape memory behavior. Brush‐PCLs are prepared by ring‐opening metathesis polymerization (ROMP) of a norbornenyl‐functionalized ?‐caprolactone macromonomer (MM‐PCL) of different molecular weights. The linear analog, diacrylate end‐functionalized PCL (linear‐PCL), having comparable molecular weight of side chain of brush‐PCL is also synthesized. These polymers are thermally cured by a radical initiator in the presence of poly(ethylene glycol) diacrylate crosslinker. Thermal and linear viscoelastic properties as well as shape memory performance of the resulting PCL networks are investigated, and are significantly impacted by the PCL architecture. Therefore, our work highlights that tailoring macromolecular architecture is useful strategy to manipulate thermal, mechanical, and resulting shape memory properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3424–3433 相似文献
17.
An enhanced host–guest electro‐optical polymer system using poly(norbornene‐dicarboximides) via ROMP
Feng Yu Andrew M. Spring Lu Li Feng Qiu Kazuhiro Yamamoto Daisuke Maeda Masaaki Ozawa Keisuke Odoi Shiyoshi Yokoyama 《Journal of polymer science. Part A, Polymer chemistry》2013,51(6):1278-1284
High glass transition temperature poly(N‐cyclohexyl‐5‐norbornene‐2,3‐dicarboximide)s (NDI)s prepared by ring opening metathesis polymerization yielded polymers with a narrow polydispersity and well‐controlled molecular weight materials when using the Grubbs first generation initiator. Polymers produced using the Grubbs second generation initiator could not be controlled easily. By initiator selection it was also possible to synthesize polymers with either 98 or 52% trans microstructures. These materials were employed as electro‐optic (EO) polymer hosts for high molecular hyperpolarizability (β) phenyl vinylene thiophene vinylene bridge chromophores. This chromophore was modified by the incorporation of a tert‐butyldiphenylsilane group. The addition was able to further increase its EO coefficient (r33) to reach 93 pm/V in a trans rich poly(NDI) produced by the Grubbs first generation initiator, compared to a benchmark chromophore / polymer combination. We investigated in detail the relationship between polymer microstructure and their absolute molecular weight on forming the best host–guest with the high β chromophore. Our results indicate that by utilizing a very simple host–guest system a high r33 can be realized. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
18.
Hayoung Jeon Seonuk Park Sooji Nam Kwonwoo Shin Sung‐Ryong Kim Se Hyun Kim Jaeyoung Jang Tae Kyu An 《中国化学》2016,34(11):1103-1108
We investigated the effects of the multilayer polymer‐clay nanohybrid passivation films on the stability of pentacene organic thin‐film transistors (OTFTs) exposed to air and UV irradiation. Well‐ordered multilayer films were deposited by the spin‐assisted layer‐by‐layer assembly method using photocrosslinkable poly(vinyl alcohol) with the N‐methyl‐4(4′‐formylstyryl)pyridinium methosulfate acetal group (SbQ‐PVA) and Na+‐montmorillonite in a water‐based solution process. When photocrosslinked, these SbQ‐PVA/clay multilayers were found to serve as excellent barriers to O2 and UV‐light. Moreover, when used as passivation layers, they enhanced the stability of pentacene OTFT devices exposed to air and UV radiation. 相似文献
19.
20.
Jin‐Hae Chang Dae‐Keun Park Kyo Jin Ihn 《Journal of Polymer Science.Polymer Physics》2001,39(5):471-476
Poly(amic acid) was synthesized by means of low‐temperature‐solution polymerization of 3,3′‐dihydroxybenzidine and pyromellitic dianhydride in N,N‐dimethylacetamide. The precursor polymer was heat‐treated at different temperatures to create a polybenzoxazole (PBO) through a polyimide (PI). PI containing the hydroxyl group was rearranged by decarboxylation with heat treatment, resulting in a fully aromatic PBO. Hexadecylamine was used as an organophilic alkylamine in organo‐clay. We have tried to clarify the intercalation of heterocyclic polymer chains to hexadecylamine–montmorillonite (C16‐MMT) and improve tensile properties. It was found that the addition of only a small amount of organo‐clay was enough to improve the mechanical properties of PBO. Maximum enhancement in the ultimate tensile strength for PBO hybrids was observed for the blends containing 4% C16‐MMT. The initial modulus monotonically increased with further increases in the C16‐MMT content. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 471–476, 2001 相似文献