首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An easy route to planar solid-supported polymer membranes by vesicle spreading is described. Pre-organized poly(butadiene)-block-poly(ethylene oxide)(PB-PEO) assemblies were spread on two different supports, i.e. strongly hydrophilic glass surfaces and ultrasmooth gold substrates. Polymer membranes were produced on a hydrophilic support by spreading hydroxyl-functionalized polymer vesicles, while covalently immobilized polymer membranes were obtained by spreading LA-functionalized polymer vesicles on gold substrates. Covalently bound membranes were further incubated with the peptide polymyxin B. Interactions with the polymer membrane were detected by EIS. These systems are of great interest to fundamental membrane science and have potential in technological applications, such as drug screening and (bio)sensing.  相似文献   

2.
Asymmetric molecules and materials provide an important basis for the organization and function of biological systems. It is well known that, for example, the inner and outer leaflets of biological membranes are strictly asymmetric with respect to lipid composition and distribution. This plays a crucial role for many membrane-related processes like carrier-mediated transport or insertion and orientation of integral membrane proteins. Most artificial membrane systems are, however, symmetric with respect to their midplane and membrane proteins are incorporated with random orientation. Here we describe a new approach to induce a directed insertion of membrane proteins into asymmetric membranes formed by amphiphilic ABC triblock copolymers with two chemically different water-soluble blocks A and C. In a comparative study we have reconstituted His-tag labeled Aquaporin 0 in lipid, ABA block copolymer, and ABC block copolymer vesicles. Immunolabeling, colorimetric, and fluorescence studies clearly show that a preferential orientation of the protein is only observed in the asymmetric ABC triblock copolymer membranes.  相似文献   

3.
Composite ultrafiltration membranes were fabricated by coating a thin film of self‐assembling polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) block copolymers and poly(acrylic acid) homopolymers on top of a support membrane. Block copolymers self‐assembled into a nanostructure where the minority component forms cylinders, whereas homopolymers reside in the core of the cylinders. Selective removal of the homopolymers led to the formation of pores. The morphology of the polymer layer was controlled by varying the content of homopolymers or polymer concentration of the coating solution, which led to membranes with different molecular weight cutoffs (MWCOs) and permeabilities. Uniform pores were obtained using low homopolymer contents, whereas high homopolymer contents caused macrophase separation and resulted in large polydisperse pores or craters at the surface. The thickness of the block copolymer film also influenced the structure and performance of the membranes, where a thicker film results in a strong decrease in permeability but a lower MWCO. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1546–1558  相似文献   

4.
The formation of complexes between cationic polymeric micelles of PS-b-PQ2VP amphiphilic block copolymers and DNA molecules in aqueous solutions is investigated at pH = 7. The physicochemical characteristics of the "polyplexes" at different DNA/polymer ratios were characterized in terms of mass, size and charge using static, dynamic and electrophoretic light scattering and AFM. The complexes are spherical and assume their maximum size and mass around the charge stoichiometric ratio. After addition of increased amounts of salt in the solutions, partial dissociation of the systems was observed. The present systems can be considered as mimetics of histone/DNA complexes formed under physiological conditions in living cells.  相似文献   

5.
A computational procedure is presented to quantify the order achieved in assembled block copolymer films when no disruptive defects are present (i.e., dislocations or disclinations). Both simulated and real systems were used to show that sub‐nm variation in the domain position, as well as the corresponding reciprocal lattice vectors, can reduce the accuracy in the quantification of the order of the system. The computational procedure in this work was based on fitting to the measured spatial location of the domain centroids, and incorporated a tolerance factor to account for domain position variation. The procedure was used to analyze the translational and orientational order parameters of block copolymer films assembled on a chemical pattern as well as their corresponding autocorrelation functions. The procedure was applied to a patterned substrate during three stages of a template forming process: an e‐beamed patterned photoresist, the domains of a block copolymer directed to assemble on this pattern, and the underlying structure after lift‐off. Use of the procedure demonstrated that the order of the block copolymer film could be retained in subsequent processing of the underlying template. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

6.
7.
We present an improved algorithm of the self‐consistent mean‐field implementation that has been recently proposed for the calculation of block copolymer self‐assembly. Without requiring prior knowledge of the symmetry of the mesophase segregation, the algorithm is numerically stable and significantly faster than previously proposed methods. These advantages provide a valuable tool for combinatorial screening of novel stable and metastable structural phases of block copolymers. We apply the method and demonstrate complex mesophases in linear, asymmetric triblock copolymer melts. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1777–1783, 2002  相似文献   

8.
The effects of addition of poly(ethylene oxide) (PEO) to poly(ethylene oxide)16block‐poly(butylene oxide)22 (EB1) polymersome dispersions has been studied. Aggregation and membrane fusion between polymersomes were observed with great control of the outcome by varying PEO molecular weight. Small‐scale fusion of 2 to 3 polymersomes was seen with low‐molecular‐weight PEO, whilst large‐scale aggregation occurred above a critical PEO molecular weight of 4 000 Da. The resulting highly porous EB1‐PEO aggregate shows great promise for applications in cell entrapment for transport and delivery, and as a three‐dimensional scaffold for use in tissue engineering.

  相似文献   


9.
Preparation of functional domains with a spacing of 10 nm is a benchmark set to fabricate next‐generation electronic devices. Organic–inorganic block copolymers form well‐ordered microphase separations with very small domain sizes. The design and preparation of a novel block copolymer consisting of syndiotactic polymethyl methacrylate (st‐PMMA) and polyhedral oligomeric silsesquioxane (POSS)‐functionalized polymethacrylate, designated as st‐PMMA‐b‐PMAPOSS, which can recognize functional molecules, are reported. The st‐PMMA segments form a helical structure and encapsulate C60 in the helical nanocavity, leading to the formation of an inclusion complex. Although the ordering of the domains is not high, C60 domains that are in a quasi‐equilibrium state, with about 10‐nm domain spacings, are generated using st‐PMMA‐b‐PMAPOSS that can recognize functional molecules. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2181–2189  相似文献   

10.
Block copolymer vesicles can be prepared in solution from a variety of different amphiphilic systems. Polystyrene‐block‐poly(acrylic acid), polystyrene‐block‐poly(ethylene oxide), and many other block copolymer systems can produce vesicles of a wide range of sizes; those in the range of 100–1000 nm have been explored extensively. Different factors, such as the absolute and relative block lengths, the presence of additives (ions, homopolymers, and surfactants), the water content in the solvent mixture, the nature and composition of the solvent, the temperature, and the polydispersity of the hydrophilic block, provide control over the types of vesicles produced. Their high stability, resistance to many external stimuli, and ability to package both hydrophilic and hydrophobic compounds make them excellent candidates for use in the medical, pharmaceutical, and environmental fields. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 923–938, 2004  相似文献   

11.
Ring-opening metathesis polymerization was used to generate an ABC triblock copolymer, containing complementary diamidopyridine (DAP) and thymine (THY) outer blocks, which assembles into spherical aggregates held together by DAP-THY noncovalent interactions. Addition of THY-containing small guest molecules results in complete opening and deaggregation of the block copolymer micelle. This molecular recognition and macroscopic response shows high selectivity to the guest structure, and tolerates only a small amount of conformational mobility in the THY guest. On the other hand, addition of a small DAP-containing guest does not break the aggregates, but instead, results in new micelles which show a different selectivity profile from the parent morphology. We have examined the effect of a number of structural features in the block copolymers, on both the extent and selectivity of their macroscopic response to guests (that is, opening of the micelle). This study has resulted in a set of structural guidelines, which help in the design of effective molecule-responsive micelles for applications in selective drug delivery, sensing, and surface patterning.  相似文献   

12.
When pressure is applied to dynamic interactive membranes consisting of micelles composed of a triblock copolymer, their morphologies can be fine-tuned. Membranes with a range of porosities are accessible which can regulate and thereby control filtration performance and also display effective autonomous healing.  相似文献   

13.
14.
Recent advances in polymer synthesis have significantly enhanced the ability to rationally design block copolymers with tailored functionality. The self-assembly of these macromolecules in the solid state or in solution allows the formation of nanostructured materials with a variety of properties and potential functions. This Review illustrates recent progress in the field of block copolymer materials by highlighting selected emerging applications.  相似文献   

15.
16.
Block copolymer directed self‐assembly (BCP) with chemical epitaxy is a promising lithographic solution for patterning features with critical dimensions under 20 nm. In this work, we study the extent to which lamellae‐forming poly(styrene‐b‐methyl methacrylate) can be directed with chemical contrast patterns when the pitch of the block copolymer is slightly compressed or stretched compared to the equilibrium pitch observed in unpatterned films. Critical dimension small angle X‐ray scattering complemented with SEM analysis was used to quantify the shape and roughness of the line/space features. It was found that the BCP was more lenient to pitch compression than to pitch stretching, tolerating at least 4.9% pitch compression, but only 2.5% pitch stretching before disrupting into dislocation or disclination defects. The more tolerant range of pitch compression is explained by considering the change in free energy with template mismatch, which suggests a larger penalty for pitch stretching than compressing. Additionally, the effect of width mismatch between chemical contrast pattern and BCP is considered for two different pattern transfer techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 595–603  相似文献   

17.
18.
A series of fluorine‐containing amphiphilic diblock copolymers comprising hydrophobic poly(p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate) (PTPFCBPMA) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments were synthesized via successive reversible addition fragmentation chain transfer (RAFT) polymerizations. RAFT homopolymerization of p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate was first initiated by 2,2′‐azobisisobutyronitrile using cumyl dithiobenzoate as chain transfer agent, and the results show that the procedure was conducted in a controlled way as confirmed by the fact that the number‐average molecular weights increased linearly with the conversions of the monomer while the polydispersity indices kept below 1.30. Dithiobenzoate‐capped PTPFCHPMA homopolymer was then used as macro‐RAFT agent to mediate RAFT polymerization of 2‐(diethylamino)ethyl methacrylate, which afforded PTPFCBPMA‐b‐PDEAEMA amphiphilic diblock copolymers with different block lengths and narrow molecular weight distributions (Mw/Mn ≤ 1.28). The critical micelle concentrations of the obtained amphiphilic diblock copolymers were determined by fluorescence spectroscopy technique using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of the formed micelles were investigated by transmission electron microscopy and dynamic light scattering, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Surface coatings were prepared from semifluorinated monodendron surface‐active block copolymers (SABC) and a thermoplastic elastomer (TPE) [poly(styrene‐b‐ethylene butylene‐b‐styrene)] by either spin‐casting a bilayer structure or by blending. The surface of these coatings was characterized by contact angle measurements, scanning force microscopy (SFM) and near‐edge X‐ray absorption fine structure (NEXAFS) methods. Both bilayers and blends resulted in very low energy surfaces under the right processing conditions and the liquid crystallinity of the semifluorinated monodendrons gave rise to temporally stable, non‐reconstructing surfaces in water. However for small thicknesses of the SABC top layer or for low SABC content blends, SFM shows islands of the fluorinated block of the SABC and incomplete surface coverage of the TPE, an observation confirmed by NEXAFS analysis. Very high water contact angles were produced by even modest amounts of SABC in either case but to achieve low contact angle hysteresis, it was necessary to produce uniform surface coverage by the SABC. Such uniform coverage can be accomplished by spin casting a top layer of SABC as thin as 60 nm in the bilayer case but at least 10 wt% SABC in TPE combined with drop casting of a hot solutions is needed for the blends to achieve equivalent surface structure and properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 411–420, 2004  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号