首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of a three‐armed polymer with an isocyanurate–thiourethane core structure is described. Monofunctional reversible addition–fragmentation chain transfer (RAFT) agent 2 and trifunctional RAFT agent 5 were prepared from mercapto‐thiourethane and tris(mercapto‐thiourethane), which were obtained from the aminolysis of mono‐ and trifunctional five‐membered cyclic dithiocarbonates, respectively. The radical polymerization of styrene in the presence of 2,2′‐azobis(isobutyronitrile) and RAFT agent 2 in bulk at 60 °C proceeded in a controlled fashion to afford the corresponding polystyrene with desired molecular weights (number‐average molecular weight = 3000–10,100) and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.13). On the basis of the successful results with the monofunctional RAFT agents, three‐armed polystyrene with thiourethane–isocyanurate as the core structure could be obtained with trifunctional RAFT agent 5 in a similar manner. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5498–5505, 2005  相似文献   

2.
The trifunctional five‐membered cyclic carbonate 2 and dithiocarbonate 3 were successfully synthesized by the reaction of trifunctional epoxide 1 with carbon dioxide and carbon disulfide, respectively. The crosslinking reactions of 2 with p‐xylylenediamine or hexamethylenediamine were carried out in dimethyl sulfoxide at 100 °C for 48 h to produce the corresponding crosslinked poly(hydroxyurethane)s quantitatively. The crosslinking reactions of 3 with both p‐xylylenediamine and hexamethylenediamine, followed by acetylation of thiol moiety, produced the corresponding crosslinked poly(thioester–thiourethane)s quantitatively. The obtained crosslinked poly(hydroxyurethane)s were thermally more stable than the analogous crosslinked poly(thioester–thiourethane)s, probably because of less thermal stability of thiourethane moiety than hydroxyurethane moiety. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5983–5989, 2004  相似文献   

3.
A five‐membered cyclic dithiocarbonate having phenylcarbamate moiety 1 underwent cationic ring‐opening polymerization by using methyl trifluoromethanesulfonate as an initiator in nitrobenzene at 60 °C. Both of the corresponding first‐order kinetic plot and conversion‐molecular weight plot showed linearity to suggest the living fashion of the polymerization, which was then supported by two‐stage polymerization experiment. The living fashion as well as the regioselective formation of the repeating unit suggested significant contribution of the neighboring group participation of the carbamate group to form a stabilized cationic propagating end, of which structure was confirmed by performing an equimolar reaction of 1 and methyl trifluoromethanesulfonate with analyzing the resulting species by NMR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4459–4464, 2007  相似文献   

4.
5.
Star‐shaped poly(phenoxy propylene sulfide) [poly (PPS)] were synthesized by anionic polymerization using a trifunctional initiator ( I 1) derived from a trifunctional five‐membered cyclic dithiocarbonate and benzyl amine. Conditions for the anionic polymerization of PPS were optimized to obtain polymers with desired Mns and narrow Mw/Mns. The best catalyst and solvent were DBU and DMF, respectively. The star‐shaped structure of the resulting star poly(PPS) was supported by SEC analysis. The refractive indexes (nD) of the star poly (PPS) were relatively high (>1.64). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 525–531, 2010  相似文献   

6.
A styrene‐based monomer having a five‐membered cyclic dithiocarbonate structure, 4‐vinylbenzyl 1,3‐oxathiolane‐2‐thione‐5‐ylmethyl ether (VBTE), was synthesized from 4‐vinylbenzyl glycidyl ether (VBGE) and carbon disulfide in the presence of lithium bromide in 86% yield. Radical polymerization of VBTE in dimethyl sulfoxide by 2,2′‐azobisisobutyronitrile was carried out at 60 °C to afford the corresponding the polymer, polyVBTE, in 64% yield. PolyVBTE with number‐averaged molecular weight higher than 31,000 was obtained. The glass transition temperature (Tg) and 5 wt % decomposition temperature (Td5) of the polyVBTE were evaluated to be 66 and 264 °C under nitrogen atmosphere by differential scanning calorimetry and thermal gravimetry analysis, respectively. It was confirmed that a polymer consisting of the same VBTE repeating unit could also be obtained via polymer reaction, that is, a lithium bromide‐catalyzed addition of carbon disulfide to a polyVBGE prepared from a radical polymerization of VBGE. Copolymerization of VBTE and styrene with various compositions efficiently gave copolymers of VBTE and styrene. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
Anionic ring‐opening polymerizations of methyl 4,6‐O‐benzylidene‐2,3‐O‐carbonyl‐α‐D ‐glucopyranoside (MBCG) were investigated using various anionic polymerization initiators. Polymerizations of the cyclic carbonate readily proceeded by using highly active initiators such as n‐butyllithium, lithium tert‐butoxide, sodium tert‐butoxide, potassium tert‐butoxide, and 1,8‐diazabicyclo[5.4.0]undec‐7‐ene, whereas it did not proceed by using N,N‐dimethyl‐4‐aminopyridine and pyridine as initiators. In a polymerization of MBCG (1.0 M), 99% of MBCG was converted within 30 s to give the corresponding polymer with number‐averaged molecular weight (Mn) of 16,000. However, the Mn of the polymer decreased to 7500 when the polymerization time was prolonged to 24 h. It is because a backbiting reaction might occur under the polymerization conditions. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
A bifunctional five‐membered cyclic carbonate was synthesized from carbon dioxide and diglycidyl terephthalate, and its polyaddition with alkyl diamines were carried out in DMF at room temperature to obtain the corresponding poly(hydroxyurethane)s with Mn s in the range of 6300–13200 in good yields. The structures of the obtained polymers were confirmed by IR and NMR spectroscopy and their glass‐transition and decomposition temperatures were observed at 3–29 °C and 182–277 °C, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2375–2380, 2000  相似文献   

9.
The bicyclic amidinium iodide effectively catalyzed the reaction of carbon dioxide and the epoxy‐containing oxetane under ordinary pressure and mild conditions with high chemoselectivity to give the corresponding oxetane monomer containing five‐membered cyclic carbonate quantitatively. The cationic ring‐opening polymerization of the obtained monomer by boron trifluoride diethyl ether proceeded to give linear polyoxetane bearing five‐membered cyclic carbonate pendant group in high yield. The molecular weight of the polyoxetane was higher than that of polyepoxide obtained by the cationic ring‐opening polymerization of epoxide monomer containing five‐membered cyclic carbonate. The cyclic carbonate functional crosslinked polyoxetanes were also synthesized by the cationic ring‐opening copolymerization of cyclic carbonate having oxetane and commercially available bisoxetane monomers. Analyses of the resulting polyoxetanes were performed by proton nuclear magnetic resonance, size exclusion chromatography, thermogravimetric analysis, and differential scanning calorimetry. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2606–2615  相似文献   

10.
Crosslinked poly(mercapto‐thiourethane) was employed as a precursor for graft copolymer synthesis. The crosslinked stem polymer ( 1 ) was easily prepared by polyaddition of a bifunctional dithiocarbonate and piperazine under air atmosphere via oxidative coupling of mercapto group. Polymerization of styrene and methyl methacrylate in the presence of 1 yielded the corresponding crosslinked graft copolymers with high grafting weight percentages (>1800%). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5097–5102, 2005  相似文献   

11.
The cyclic amidinium iodide effectively catalyzed the ring‐expansion addition of epoxides with carbon dioxide under ordinary pressure and mild conditions to obtain the corresponding five‐membered cyclic carbonates in high yield. The novel triazole‐linked bifunctional five‐membered cyclic carbonate was synthesized successfully by the click reaction of the azide‐ and the alkyne‐substituted five‐membered cyclic carbonates under ambient temperature in high yield. The chemical structure of the novel bis(cyclic carbonate) was characterized by one‐ and two‐dimensional nuclear magnetic resonance spectra. The obtained bis(cyclic carbonate) was converted with commercially available diamines to poly(hydroxyurethane) containing triazole segment without catalyst in high yield. Analyses of the resulting poly(hydroxyurethane)s were performed by proton nuclear magnetic resonance, size exclusion chromatography, thermogravimetric analysis, and differential scanning calorimetry. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 986–993  相似文献   

12.
Tetrakis bromomethyl benzene was used as a tetrafunctional initiator in the synthesis of four‐armed star polymers of methyl methacrylate via atom transfer radical polymerization (ATRP) with a CuBr/2,2 bipyridine catalytic system and benzene as a solvent. Relatively low polydispersities were achieved, and the experimental molecular weights were in agreement with the theoretical ones. A combination of 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated free‐radical polymerization and ATRP was used to synthesize various graft copolymers with polystyrene backbones and poly(t‐butyl methacrylate) grafts. In this case, the backbone was produced with a 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated stable free‐radical polymerization process from the copolymerization of styrene and p‐(chloromethyl) styrene. This polychloromethylated polymer was used as an ATRP multifunctional initiator for t‐butyl methacrylate polymerization, giving the desired graft copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 650–655, 2001  相似文献   

13.
A series of well‐defined ferrocene‐based amphiphilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). A new ferrocene‐based monomer, 2‐(acryloyloxy)ethyl ferrocenecarboxylate (AEFC), was prepared first and it can be polymerized via ATRP in a controlled way using methyl 2‐bromopropionate as initiator and CuBr/PMDETA as catalytic system in DMF at 40 °C. PNIPAM‐b‐PEA backbone was synthesized by sequential SET‐LRP of NIPAM and HEA at 25 °C using CuCl/Me6TREN as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with α‐bromoisobutyryl bromide. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) were synthesized via ATRP of AEFC initiated by the macroinitiator. The electro‐chemical behaviors of PAEFC homopolymer and PNIPAM‐b‐(PEA‐g‐PAEFC) graft copolymer were studied by cyclic voltammetry. Micellar properties of PNIPAM‐b‐(PEA‐g‐PAEFC) were investigated by transmission electron microscopy and dynamic light scattering. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4346–4357, 2009  相似文献   

14.
A series of novel graft copolymers consisting of perfluorocyclobutyl aryl ether‐based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of thermal [2π + 2π] step‐growth cycloaddition polymerization of aryl bistrifluorovinyl ether monomer and atom transfer radical polymerization (ATRP) of methyl methacrylate. A new aryl bistrifluorovinyl ether monomer, 2‐methyl‐1,4‐bistrifluorovinyloxybenzene, was first synthesized in two steps from commercially available reagents, and this monomer was homopolymerized in diphenyl ether to provide the corresponding perfluorocyclobutyl aryl ether‐based homopolymer with methoxyl end groups. The fluoropolymer was then converted to ATRP macroinitiator by the monobromination of the pendant methyls with N‐bromosuccinimide and benzoyl peroxide. The grafting‐from strategy was finally used to obtain the novel poly(2‐methyl‐1,4‐bistrifluorovinyloxybenzene)‐g‐poly(methyl methacrylate) graft copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.46) via ATRP of methyl methacrylate at 50 °C in anisole initiated by the Br‐containing macroinitiator using CuBr/dHbpy as catalytic system. These fluorine‐containing graft copolymers can dissolve in most organic solvents. This is the first example of the graft copolymer possessing perfluorocyclobutyl aryl ether‐based backbone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
Reactivity of isothiocynate moieties in the side chain of polymethacrylate with amine, alcohol, or thiol was investigated, and the reactions were applied to preparation of networked polymers. Isothiocyanate of polymer side chain rapidly reacted with amines without a catalyst, to give the corresponding thioureas. However, it did not react with alcohols or thiols under the same conditions. Using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as a catalyst, addition of alcohols or thiols to the isothiocyanate proceeded smoothly. Addition of amines, alcohols, and thiols to isothiocyanates moiety contained in the side chain of polymethacrylate also proceeded readily with or without the catalyst, respectively, to effectively give the corresponding side chain modified polymers. Occurrence of these additions was confirmed by 1H NMR and IR measurements. Glass transition temperatures and thermal decomposition temperatures of the obtained polymers were investigated by differential scanning calorimetry and thermogravimetric analysis. Networked polymers were easily prepared by addition of 1,6‐hexamethylenediamine or hexamethylene glycol to the polymethacrylate having isothiocyanato groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1832–1842  相似文献   

16.
The grafting of poly(methylmethacrylate) onto poly(ethylene‐co‐1‐octene) by in situ radical polymerization of methyl methacrylate is a process where the side reactions are difficult to characterize. To increase the understanding of both the nature and the extent of such reactions, products resulting from the same chemical system, where polymer is replaced by squalane and/or pentadecane, are analyzed. The influence of the temperature, the nature of peroxides (used as radicals generators) and the monomer concentration are investigated toward the chain length of the grafts. The resulting grafted PMMA and PMMA homopolymer are qualitatively analyzed by MALDI‐TOF spectroscopy and size exclusion chromatography. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5215–5226, 2007  相似文献   

17.
Poly(isoprene) (PI) with pendant functional groups was successfully synthesized by thiol‐ene addition reaction under 365 nm UV irradiation, and the functionalized PI was further modified and used to prepare graft copolymers with “V”‐shaped side chains. First, the pendant ? SCH2CH(OH)CH2OH groups were introduced to PI by thiol‐ene addition reaction between 1‐thioglycerol and double bonds, and the results showed that the addition reaction carried out only on double bonds of 1,2‐addition isoprene units. After the esterification of hydroxyl groups by 2‐bromoisobutyryl bromide, the forming macroinitiator was used to initiate the atom transfer radical polymerization (ATRP) of styrene (St) and tert‐butyl acrylate (tBA), and the graft copolymers PI‐g‐PS 2 and PI‐g‐PtBA 2 or PI‐g‐PAA 2 (by hydrolysis of PI‐g‐PtBA 2) were obtained, respectively. It was confirmed that the graft density of side chains on PI main chains could be easily controlled by variation of the contents of modified 1,2‐addition isoprene units on PI. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3797–3806, 2010  相似文献   

18.
A series of well‐defined double‐hydrophilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐(dimethylamino)ethyl acrylate) (PDMAEA) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom‐transfer radical polymerization (ATRP). PNIPAM‐b‐PEA backbone was first prepared by sequential SET‐LRP of N‐isopropylacrylamide and 2‐hydroxyethyl acrylate at 25 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with 2‐chloropropionyl chloride. The final graft copolymers with narrow molecular weight distributions were synthesized by ATRP of 2‐(dimethylamino)ethyl acrylate initiated by the macroinitiator at 40 °C using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system via the grafting‐from strategy. These copolymers were employed to prepare stable colloidal gold nanoparticles with controlled size in aqueous solution without any external reducing agent. The morphology and size of the nanoparticles were affected by the length of PDMAEA side chains, pH value, and the feed ratio of the graft copolymer to HAuCl4. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1811–1824, 2009  相似文献   

19.
A series of novel poly(amine amide)s ( IIa – IIl ) with pendent N‐carbazolylphenyl units having inherent viscosities of 0.25–1.06 dL/g were prepared via direct phosphorylation polycondensation from various dicarboxylic acids and a carbazole‐based aromatic diamine. Except for poly(amine amide) IIc , derived from trans‐1,4‐cyclohexanedicarboxylic acid, all the other amorphous poly(amine amide)s were readily soluble in many polar solvents, such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone (NMP), and could be cast into transparent and flexible films. The aromatic poly (amine amide)s had useful levels of thermal stability associated with relatively high glass‐transition temperatures (268–331 °C), 10% weight loss temperatures in excess of 540 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers exhibited maximum ultraviolet–visible absorption at 293–361 nm in NMP solutions. Their photoluminescence in NMP solutions exhibited fluorescence emission maxima around 362 and 448–499 nm for aromatic–aliphatic poly(amine amide)s IIa – IIc and aromatic poly (amine amide)s IId – IIl , respectively. The fluorescence quantum yield in NMP solutions ranged from 0.34% for IIj to 4.44% for IIa . The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine amide) films cast onto an indium tin oxide coated glass substrate exhibited reversible oxidation at 0.81 V and irreversible oxidation redox couples at 1.20 V versus Ag/AgCl in acetonitrile solutions, and they revealed excellent stability of the electrochromic characteristics, with a color change from yellow to green at applied potentials ranging from 0.00 to 1.05 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4108–4121, 2006  相似文献   

20.
Four different approaches to introduce a specific functional group at the ω terminus of poly(methacrylate)s (PMMAs) prepared via copper(I)bromide/pyridinalimine‐mediated atom transfer polymerization, under polymerization conditions, are reported. Method 1 involves the homolysis of the ω‐C Br bond with a subsequent reaction, via coupling or disproportionation, with an external radical species. The reaction with 2,2,6,6‐tetramethylpiperidin‐N‐oxyl shows a high conversion (>78%) of the ω‐bromo PMMA chains into their corresponding macromonomer analogues. Method 2 utilizes monomers that are able to undergo radical addition followed by subsequent fragmentation. Reactions with trimethyl[1‐(trimethylsiloxy)phenylethenyloxy]silane and allyl bromide show quantitative and 57% transformation, respectively. Method 3 is the reaction of a monomer that yields a relatively more stable secondary, or primary, carbon–halogen bond. Reactions with divinylbenzene, n‐butylacrylate, and ethylene showed quantitative, 62%, and quantitative additions, respectively. Method 4 is the addition of nonhomopropagating monomers, that is, maleic anhydride. This reaction proceeds quantitatively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2678–2686, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号