首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An attempt for a theoretical treatment of radiationless transitions from excited charge-transfer states in molecular complexes is made within the framework of the statistical limit of radiationless transitions theory. This work deals with the S1 → S0 internal conversion in charge-transfer complexes of tetracyanoethylene (an electron acceptor) with benzene and toluene and their perdeuterated analogues. A dominant role of the high-frequency totally symmetric intramolecular vibrational modes in the nonradiative decay of excited charge-transfer states is assumed (this was inferred from the experimentally observed deuterium isotope effect on radiationless S1 → S0 transitions). Calculated absolute rate constants for internal conversion are found to be in good agreement with experimental ones. The results of our calculations reflect very well the observed moderate deuterium isotope effect.  相似文献   

2.
The energies of the intermolecular interactions of an O2 molecule in the ground and excited states with the electron-excited and non-excited model complexes of chlorophyll were calculated using the DFT, CASSCF, SA-CASSCF, MCQDPT2, and XMCQDPT2 methods. The activation energies of formation and dissociation of the oxygen complexes were estimated. The radiative electric dipole moments of (0 → 0) spin-allowed S → S, T → T, and spin-forbidden S → T transitions were calculated taking into account the spin-orbit coupling, and rate constants of nonradiative transitions that determine the generation and deactivation of the O2 molecule (1Δg) were evaluated. The effect of histidine on the probability of singlet oxygen generation sensitized by the model chlorophyll complex was considered in detail.  相似文献   

3.
Based on the completely optimized S0, S1, and S2 molecular geometries of azulene, the vibronic structure of the S1S0 absorption as well as of the S1S0, S2S1, and S2S0 fluorescences is investigated theoretically within the adiabatic approximation. By means of theory-experiment comparisons, the influence of non-Condon terms and of the Dushinsky effect on the vibronic structure of azulene spectral behavior is discussed. Typical for the S1S0 absorption and the S1S0 fluorescence are vibronic transition moment contributions of Condon type, whereas the interpretation of azulene S2S1 and S2S0 fluorescences is successful only within the scope of the Herzberg–Teller approach by taking into account vibronic coupling terms and, additionally, the Dushinsky effect in the latter case. An analysis of the relevant vibrational modes is given.  相似文献   

4.
S2 → S0 fluorescence quantum yields and S2 lifetimes of eight aromatic thiones in inert perfluoroalkane solutions at room temperature have been measured using picosecond laser techniques. Photostable, structurally rigid thiones undergo S2 → S1 internal conversion at rates consistent with the energy gap law of radiationless transitions. An average electronic coupling matrix element of 1.9 × 102 cm?1 is found.  相似文献   

5.
Summary Radiative decay and phosphorescence of triplet stare benzene is doubly -orbital and spin- forbidden and is only activated through vibronic coupling among the manifold of triplet states. For this reason the determination of lifetime and transition moments for the decay of triplet benzene has posed a considerable challenge to both theory and experiment. In the present work we have addressed the triplet benzene problem at several levels of theory; by truncated perturbation theory and semiempirical, CNDO/S-CI, calculations; by complete sum-over-state calculations as implemented in recentab initio multiconfiguration quadratic response (MCQR) theory; and by direct MCQR calculations of vibronic phosphorescence. The vibronic coupling is in the two former cases treated by the Herzberg-Teller (H-T) perturbation theory, involving four main mechanisms for the phosphorescent decay of triplet benzene. The results and interpretations given by these approaches as well as their merits and limitations are presented and discussed in some detail. Our calculations indicate that the phosphorescent decay of the3 B 1u state takes place predominantly through vibronic coupling along thee 2g mode. We obtain a phosphorescence that is almost completely out-of-plane polarized, which is in line with more recent measurements by the microwave-induced delayed phosphorescence technique, and could reproduce quite well the intensity ratios for different vibronic bands obtained in that experiment. The final triplet state lifetime is the result of a delicate sum of contributions from several vibronic degenerate and non-degenerate modes. The direct vibronic phosphorescence calculations predict a long lifetime, about one minute — 68 seconds for the best wavefunction — and seem to focus on a doubling of the assumed, albeit not established, best experimental value for the radiative lifetime of triplet benzene; 30 seconds.Dedicated to Inga Fischer-Hjalmars on her 75th birthday  相似文献   

6.
Using PMDR techniques, the top two zero-field triplet levels in 9,10-dichlorophenanthrene and 1,2,3,4-tetrachloronaphthalene are shown to be most favoured by S1 → T1 ISC and T1 → S0 phosphorescence. Spin—orbit vibronic coupling via CCl out-of-plane modes and static distortions of the heavy atom are responsible for such behaviour respectively.  相似文献   

7.
The S1−S0 electronic spectrum of methyl cinnamate in a supersonic jet has been investigated to discriminate the transitions of the s-cis/s-trans conformers. Population labelling spectroscopy was applied to the conformer discrimination, and vibronic bands belonging to each conformer were identified. The relative population was estimated from the fluorescence quantum yields obtained by lifetime measurements. It was found that both conformers exist almost equally in a supersonic jet. The conformer identification of the vibronic bands was carried out based on the difference of the red-shift of their hydrogen-bonded complexes with methanol.  相似文献   

8.
《Chemical physics》2005,315(3):215-239
Geometrical structure of free-base porphin (H2P) and Mg- and Zn-porphyrins together with their vibrational frequencies and vibronic intensities in phosphorescence are investigated by density functions theory (DFT) with the standard B3LYP functional. These molecules have a closed-shell singlet ground state (S0) and low-lying triplet (T1) excited states of ππ* type. The S0–T1 transition probability and radiative lifetime of phosphorescence (τp) of these molecules are calculated by time-dependent DFT utilizing quadratic response functions for account of spin–orbit coupling (SOC) and electric-dipole transition moments including displacements along active vibrational modes. The infrared and Raman spectra in the ground singlet and first excited triplet states are also studied for proper assignment of vibronic patterns. The long radiative lifetime of free-base porphin phosphorescence (τp  360 s at low temperature limit, 4.2 K) gets considerably shorter for the metalloporphyrins. An order of magnitude reduction of τp is predicted for Mg-porphyrin but no change of phosphorescence polarization is found. A forty times enhancement of the radiative phosphorescence rate constant is obtained for Zn-porphyrin in comparison with the H2P molecule which is accompanied by a strong change of polarization and spin-sublevel radiative activity. A strong vibronic activity of free-base porphin phosphorescence is found for the b2g mode at 430 cm−1, while the 679 and 715 cm−1 vibronic bands of b3g symmetry are less active. These and other out-of-plane vibrations produce considerable changes in the radiative constants of different spin sublevels of the triplet state; they also promote the S1  T1 intersystem crossing. Among the in-plane vibrations the ag mode at 1614 cm−1 is found very active; it produces a long progression in the phosphorescence spectrum. The time-dependent DFT calculations explain the effects of the transition metal atom on phosphorescence of porphyrins and reproduce differences in their phosphorescence and EPR spectra.  相似文献   

9.
Summary Based upon completely-optimized S0 and S1 molecular geometries the vibrational structures of S0-S1 absorption and fluorescence transitions of selected 1,3-diketonato boron complexes being differently substituted, are calculated within the Herzberg-Teller approach taking into account vibronic coupling contributions. In dependence on substituted diketone as well as on the co-ligand, the influence of vibronic coupling and the consequences of intensity borrowing on the spectral behaviour in absorption and fluorescence are found to be quite different for the studied boron complexes. Consequently, for some complexes their spectroscopic properties may be interpreted exclusively by means of the Herzberg-Teller approach. An analysis of the relevant vibrational modes is given.
  相似文献   

10.
It is shown that some features of intensity distribution among certain vibronic transitions in naphthalene molecule can be understood, when one takes into account adiabatic and nonadiabatic interaction between S1(1B3u), S2(tB2u), and S3(IB3u) electronic states. the vibronic activity of the 6?(b1g) mode in naphthalene-d8 can be explained in terms of an anharmonic coupling with the 7?(b1g) mode. The theoretical analysis suggests reinterpretation of some vibronic transitions.  相似文献   

11.
The emission spectrum of polycrystalline [2,2]paracylophane shows a resolved vibronic structure with a 241 cm?1 progression at He temperatures. The dependence of the energy of this mode upon selective deuteration in combination with results from FIR and Raman spectra could be used to identify the mode as a torsional dimer vibration. The emission spectra could be simulated assuming a linear coupling of the torsional mode to the electronic transitions with coupling strengths of S = 10 (fluorescence) and S = 13 (phosphorescence). This corresponds to an equilibrium displacement of the benzene rings under electronic excitation by a torsional angle of 10.6° (S1) and 12.1° (T1), in addition to the small torsion in the ground state S0 by about 3°.  相似文献   

12.
An attempt is reported to explain the main intensity patterns in the phosphorescence spectra of 2,4-, 2,5- and 3,4-dimethyl-benzaldehyde-1h1 and -1d1, observed previously. The analysis is based on CNDO and MINDO calculations of (transition) dipole moments, spin-orbit couplings, vibronic couplings, state energies, normal coordinates and vibrational frequencies. Where possible these quantities are empirically checked and corrected. Additional information, especially about the separation of the closely spaced T1(3ππ*) and T2(3*) states, is obtained from phosphorescence excitation spectra reported here for all six isomers. The phosphorescence spectra consist of two components, an “allowed” component of 3ππ* and a “forbidden” component of 3* symmetry. It is concluded that the allowed component is partly induced by the crystal field. The forbidden component is vibronically induced by out-of-plane vibrations among which the aldehydic CH(CD)-wag mode is the most active. The observed intensity patterns for this component are ascribed to interference between two mechanisms, one involving vibronic coupling between S0 and S1(1*) and spin-orbit coupling between S1 and T1, the other involving vibronic coupling between T1 and T2 and spin-orbit coupling between S0 and T2. Within the groups of either 1h1 or 1d1 isomers, the main changes in the spectrum are shown to be due to the change in T1–T2 energy separation. The changes observed upon deuterium substitution in the aldehyde group involve, in addition to changes in the T1–T2 gap, changes in vibronic coupling due to normal-coordinate mixing. All these spectral changes are reproduced by calculations based on a mixture of theoretical and empirical input parameters, derived from, or at least consistent with, other observations, including excitation spectra, dipole moments and zero-field splittings. It is concluded that the mechanisms underlying these calculations offer a satisfactory explanation of the observed intensity patterns in the phosphorescence spectra of dimethylbenzaldehydes.  相似文献   

13.
Evidence is presented which indicates that the direct spin—orbit coupling between low-lying ππ* states is largely responsible for the efficient S1 → T1 intersystem crossing and T1 → S0 radiative transition in non-planar aromatic amines.  相似文献   

14.
The vibronic spectrum of the 2,2-difluoroethanal vapor was recorded using a multipass optical cell with an optical length of at least 140 m. The spectrum in the region of 300—364 nm was assigned to the S1S0 electronic transition (from the ground S0 to the first excited singlet S1 electronic state); the vibrational structure of the spectrum was analyzed. The spectrum bands were assigned to two systems of vibronic transitions, namely, transitions between the levels of the cis-conformer (S0) and of the S1 conformers, with the origins (00 0 transitions between the zero vibrational levels of conformers) at 29192 and 29087 cm–1, respectively. Analysis of the spectrum showed that the S1S0 electronic excitation of the cis-conformer was followed by rotation of the CHF2 top and pyramidal distortion of the carbonyl fragment. A number of fundamental frequencies were found for S1 conformers, in particular, torsion and inversion energy levels. The experimental data are in satisfactory agreement with the results of quantum-chemical calculations for the 2,2-difluoroethanal molecule in the S0 and S1 states.  相似文献   

15.
The excitation energy and isotope dependence of fluorescence lifetimes and quantum yields in dilute vapors of fluorene and β-naphthylamine are discussed in relation to the manner in which different channels of radiationless transitions are affected by the vibrational energy content of the molecule. Evidence is presented which shows that vibrational relaxation is slow compared with electronic relaxation for molecules with low excess energies and that the rate of S1 → S0 internal conversion is greater in the deuterated compound than in the corresponding protonated species for very large excess energies.  相似文献   

16.
Ground state (GS) instability of nondegenerate molecules in high symmetric structures is understood through Pseudo Jahn–Teller mixing of the electronic states through the vibronic coupling. The general approach involves setting up of a Pseudo Jahn–Teller (PJT) problem wherein one or more symmetry allowed excited states couple to the GS to create vibrational instability along a normal mode. This faces two major complications namely (1) estimating the adiabatic potential energy surfaces for the excited states which are often difficult to describe in case the excited states have charge-transfer or multi-excitonic (ME) character and (2) finding out how many such excited states (all satisfying the symmetry requirements for vibronic coupling) of increasing energies need to be coupled with the GS for a particular PJT problem. An analogous alternative approach presented here for the well-known case of symmetry breaking of planar (D6h) hexasilabenzene (Si6H6) to the buckled (D3d) structure involves identifying the second-order donor–acceptor, hyperconjugative interactions (E2i → j) that stabilize the distorted structure. Following the recent work of Nori-Shargh and Weinhold, one observes that the orbitals involved in the vibronic coupling between the S0/Sn states and those for the donor (filled)–acceptor (empty) interactions are identical. In fact, deletion of any particular pair of E2i → j interaction creates vibrational instability in the buckled structure and as a corollary, deleting it for the planar structure removes its instability. The one-to-one correlation between the natural bond orbital theory and PJT theory assists in an intuitive identification of the relevant (few) excited states from a manifold of computed ones that cause symmetry breaking by vibronic coupling. © 2019 Wiley Periodicals, Inc.  相似文献   

17.
Emission spectra, quantum yields and decays of the fast emission component of s-triazine vapor following excitation into various vibronic levels in S1 are reported. A monotonic increase of the radiative decay constant with increasing excitation energy suggests that a singlet electronic state higher than S1 should participate in the fluorescence emission.  相似文献   

18.
The electronic and vibrational spectra of tetramethylammonium fluorochromate(VI) have been measured. The observed electronic transitions correlated simply and directly with those of CrO 4 2− . The electronic spectrum shows a weak band at about 450 nm and the edge of a very strong, broad band which extends beyond 344 nm. The intervening band has been identified with o oxygen-to-chromium charge transfer. This band exhibits a partially resolved vibrational progression or vibronic coupling due to excitation of a symmetric stretching mode in the CrO3 group. This vibronic coupling is analyzed completely due to spectral correlation and symmetry of transitions, the Duschinsky effect, vibronic-spin-orbit coupling, environmental effect, anharmonicity order, vibrational intervals, and electronic rearrangement. The text was submitted by the authors in English.  相似文献   

19.
Franck—Condon factors for the T1 ? S0 transition in naphthalene-h8 and naphthalene-d8 are calculated employing the correlation function approach which allows us to investigate the distribution of the released electronic energy among the normal modes of the Final ground state. The relevant coupling parameters relating to geometry, frequency and anharmonicity changes due to excitation are included. Those related to geometry changes are obtained from the vibronic intensities of the phosphorescence spectrum as well as from a calculation implementing a semi-empirical relation between bond order and bond length. The calculated nonradiative rates compare well with the experimental rates in terms of absolute magnitude and deuterium effect. The semi-empirical calculations of the ribtonic intensities provide detailed information about force fields that are otherwise indistinguishable on the basis of their ability to reproduce infrared frequencies.  相似文献   

20.
Summary Completely-optimized S0 and S1 molecular geometries of 2,5-diphenylfurane and the theoretical vibronic line spectra for its absorption and fluorescence are presented. The experimental spectroscopic peaks are reasonably reproduced by the calculated vibronic transitions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号