首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Polymerizations of 4‐(4‐acetoxybenzylideneamino)benzoic acid were performed in dibenzyltoluene (DBT) and a mixture of DBT and liquid paraffin at 350 °C for 6 h. Fibrillar crystals of poly[4‐(4‐oxybenzylideneamino)benzoyl] (POAB) having the width of 50–450 nm and the length of over 15 μm were obtained by the crystallization during the polymerization. The fibrillar crystals possessed high crystallinity and the molecular chains aligned perpendicular to the long axis of the fibrillar crystals. Plate‐like crystals were initially formed by the crystallization of oligomers, and then they changed to the fibrillar crystals via the formation of bundle‐like crystals after 1 h. Molecular weight increased by the further polymerization in the crystals. Based on these results, one‐pot preparation of the fibrillar POAB crystals was examined by the polymerization of 4‐acetoxybenzaldehyde and 4‐aminobenzoic acid. The polymerization at 180 °C for 2 h and then at 350 °C for 6 h afforded the fibrillar crystals with a small amount of the ribbon‐like crystals. Although the side‐reaction to generate the p‐benzamide sequences was not completely depressed, the sequence of heating in which 180 °C for the formation of the azomethine linkage and then 350 °C for the formation of the ester linkage was preferable to prepare the fibrillar POAB crystals. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Hollow spheres of aromatic polyamide are obtained by the reaction‐induced phase separation during polymerization of 5‐hydroxyisophthalic acid and 1,4‐phenylene diamine in an aromatic solvent at a concentration of 1–2% at 320 °C without stirring. The hollow sphere has a dimple hole and the diameters of the hollow spheres are 3–4 μm. The droplets are initially generated via liquid–liquid phase separation and then rigid cross‐linked network structure formed the rigid skin layer on the surface of the droplets. The solidification of the droplets occurred owing to the further polymerization in them with maintaining the morphology to form the hollow spheres. The hollow spheres exhibit outstanding thermal stability. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
A new aromatic, unsymmetrical ether diamine with a trifluoromethyl pendent group, 1,4‐(2′‐trifluoromethyl‐4′,4″‐diaminodiphenoxy)benzene, was successfully synthesized in three steps with hydroquinone as a starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, 2,2′‐bis(3,4‐dicarboxyphenyl)‐hexafluoropropane dianhydride, and pyromellitic dianhydride, via a conventional two‐step thermal or chemical imidization method to produce a series of fluorinated polyimides. The polyimides were characterized with solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X‐ray diffraction studies, and thermogravimetric analysis. The polyimides had inherent viscosities of 0.56–0.77 dL/g and were easily dissolved in both polar, aprotic solvents and common, low‐boiling‐point solvents. The resulting strong and flexible polyimide films exhibited excellent thermal stability, with decomposition temperatures (at 5% weight loss) above 522 °C and glass‐transition temperatures in the range of 232–272 °C. Moreover, the polymer films showed outstanding mechanical properties, with tensile strengths of 74.5–121.7 MPa, elongations at break of 6–13%, and initial moduli of 1.46–1.95 GPa, and good dielectric properties, with low dielectric constants of 1.82–2.53 at 10 MHz. Wide‐angle X‐ray diffraction measurements revealed that these polyimides were predominantly amorphous. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced microelectronic applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6836–6846, 2006  相似文献   

5.
The thermal behavior of poly(ethylene‐co‐2,2‐bis[4‐(ethylenoxy)‐1,4‐phenylene]propane terephthalate) (PET/BHEEBT) copolymers was investigated by thermogravimetric analysis and differential scanning calorimetry. A good thermal stability was found for all the samples. The thermal analysis carried out using DSC technique showed that the Tm of the copolymers decreased with increasing BHEEBT unit content, differently from Tg, which on the contrary increased. Wide‐angle X‐ray diffraction measurements permitted identifying the kind of crystalline structure of PET in all the semicrystalline samples. The multiple endotherms similar to PET were also evidenced in the PET/BHEEBT samples, due to melting and recrystallization processes. By applying the Hoffman–Weeks' method, the Tm° of PET and its copolymers was derived. The isothermal crystallization kinetics was analyzed according to Avrami's treatment and values of the exponent n close to 3 were obtained, independently of Tc and composition. Moreover, the introduction of BHEEBT units was found to decrease PET crystallization rate. Lastly, the presence of a crystal‐amorphous interphase was evidenced. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1441–1454, 2005  相似文献   

6.
Rigid‐rod poly(4′‐methyl‐2,5‐benzophenone) macromonomers were synthesized by Ni(0) catalytic coupling of 2,5‐dichloro‐4′‐methylbenzophenone and end‐capping agent 4‐chloro‐4′‐fluorobenzophenone. The macromonomers produced were labile to nucleophilic aromatic substitution. The molecular weight of poly(4′‐methyl‐2,5‐benzophenone) was controlled by varying the amount of the end‐capping agent in the reaction mixture. Glass‐transition temperatures of the macromonomers increased with increasing molecular weight and ranged from 117 to 213 °C. Substitution of the macromonomer end groups was determined to be nearly quantitative by 1H NMR and gel permeation chromatography. The polymerization of a poly(4′‐methyl‐2,5‐benzophenone) macromonomer [number‐average molecular weight (Mn) = 1.90 × 103 g/mol; polydispersity (Mw)/Mn = 2.04] with hydroxy end‐capped bisphenol A polyaryletherketone (Mn = 4.50 × 103 g/mol; Mw/Mn = 1.92) afforded an alternating multiblock copolymer (Mn = 1.95 × 104 g/mol; Mw/Mn = 6.02) that formed flexible, transparent films that could be creased without cracking. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3505–3512, 2001  相似文献   

7.
An easy synthetic procedure for soluble poly[3‐(4‐alcoxyphenyl)thiophene]s is reported. The polymers present a high regioregularity degree as determined by both UV–vis spectra and 1H and 13C NMR analysis. Furthermore, X‐ray powder diffraction analysis performed on films of the polymers suggests a π‐stacked packing structure of the macromolecules. Electrical characterization was performed on one of the synthesized polythiophenes on both undoped and doped (with FeCl3 or iodine) films. The conductivity and charge‐carrier mobility were assessed by current–voltage and field effect measurements. Well‐structured polymer films were obtained simply via spin coating from chloroform solutions and without the need of further processing, unlike other regioregular polythiophenes reported in the literature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1758–1770, 2007  相似文献   

8.
Soluble poly(para‐phenylene) having a long polymer chain (more than six repeat units) was synthesized with a tert‐butyl end‐group (t‐PPP) and was found to have improved solubility and excellent optical properties. Poly(1,3‐cyclohexadiene) (PCHD) consisting of only 1,4‐cyclohexadiene (1,4‐CHD) units was synthesized with a tert‐butyl end‐group (t‐PCHD), and completely dehydrogenated to obtain t‐PPP. This end‐group effectively prevented the crystallization of t‐PPP, and polymers containing up to 16 repeat units were soluble in tetrahydrofuran. Soluble t‐PPP obtained had an ability to form a tough thin film prepared by spin‐coating method. Optical analyses of t‐PPP provided strong evidence for a linear polymer chain structure. A block copolymer of t‐PPP and a soluble polyphenylene (PPH) was then synthesized, and the excellent optical properties were retained by this block copolymer along with its solubility. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5223–5231, 2008  相似文献   

9.
New sulfur‐containing aromatic diamines with methyl groups at the ortho position of amino groups have been developed to prepare highly refractive and transparent aromatic polyimides (PIs) in the visible region. All aromatic PIs derived from 4,4′‐thiobis[2″‐methyl‐4″‐(p‐phenylenesulfanyl)aniline ( 2 ), 4,4′‐thiobis[2,″6″‐dimethyl‐4″‐(p‐phenylenesulfanyl)aniline ( 5 ), and aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride ( 6 ) were prepared via a two‐step polycondensation. All PIs showed good thermal properties, such as 10% weight loss temperature in the range of 497–500 °C and glass transition temperatures above 196 °C. In addition, the PIs showed good optical properties, such as optical transparency above 75% at 450 nm with a 10‐μm film thickness, high refractive indices ranging from 1.7135 to 1.7301, and small in‐plane/out‐of‐plane birefringences between 0.0066 and 0.0076. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 656–662, 2010  相似文献   

10.
Poly(p‐oxybenzoyl) (POB) crystals were prepared by reaction‐induced crystallization during direct polymerization of p‐hydroxybenzoic acid in the presence of boronic anhydrides. Polymerizations were carried out at 300 °C in dibenzyltoluene at a concentration of 1% with three kinds of anhydrides of boronic acid such as 3,4,5‐trifluorophenylboronic acid (TFB), 4‐methoxyphenylboronic acid (MPB) and 4‐biphenylboronic acid (BPB). The POB crystals were formed as precipitates in the solution and the morphology was considerably influenced by both the structure of the boronic anhydride and its concentration (cB). Needle‐like crystals were firmed in the presence of TFB anhydride (TFBA) at cBs of 5 and 10 mol % by the spiral growth of lamellae. Spherical aggregates of slab‐like crystals were formed at cBs from 50 to 100 mol %. The polymerization with MPB anhydride and BPB anhydride (BPBA) also yielded the needle‐like crystals at cBs of 50 and 5 mol %, respectively. The polymerization with TFBA at lower cB was favorable to prepare the needle‐like crystal. Molecular weight was also influenced by the structure of the boronic anhydride and cB. Mn increased generally with cB and BPBA gave the highest Mn of 14.7 × 103 at cB of 100 mol %. The loose packing of the molecules in the crystal caused by the bulkiness of the end‐groups made the polymerization in the crystals more efficiently. Morphology and molecular weight of the POB crystals could be controlled by the chemical structure and the content of boronic anhydride. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

11.
The nonisothermal crystallization kinetics of a luminescent conjugated polymer, poly(9,9‐dihexylfluorene‐altco‐2,5‐didecyloxy‐1,4‐phenylene) (PF6OC10) with three different molecular weights was investigated by differential scanning calorimetry under different cooling rates from the melt. With increasing molecular weight of PF6OC10, the temperature range of crystallization peak steadily became narrower and shifted to higher temperature region and the crystallization rate increased. It was found that the Ozawa method failed to describe the nonisothermal crystallization behavior of PF6OC10. Although the Avrami method did not effectively describe the nonisothermal crystallization kinetics of PF6OC10 for overall process, it was valid for describing the early stage of crystallization with an Avrami exponent n of about 3. The combined method proposed in our previous report was able to satisfactorily describe the nonisothermal crystallization behavior of PF6OC10. The crystallization activation energies determined by Kissinger, Takhor, and Augis‐Bennett models were comparable. The melting temperature of PF6OC10 increased with increasing molecular weight. For low‐molecular‐weight sample, PF6OC10 showed the characteristic of double melting phenomenon. The interval between the two melting peaks decreased with increasing molecular weight, and only one melting peak was observed for the high‐molecular‐weight sample. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 976–987, 2007  相似文献   

12.
Two new side‐chain donor–acceptor (D‐A)‐based triphenylamine‐alt‐benzo[1,2‐b:4,5‐b′]dithiophene (TPA‐alt‐BDT) copolymers ( P1 and P2 ) with pendant benzothiadiazole (BT)/diketopyrrolopyrrole (DPP) in TPA unit were synthesized by Stille coupling polymerization. Their thermal, photophysical, electrochemical, blend film morphology and photovoltaic properties were investigated. Efficient bulk heterojunction polymer solar cells (PSCs) were obtained by solution process using both copolymers as donor materials and PC71BM as acceptor. The maximum power conversion efficiency (PCE) of 3.17% with a highest open‐circuit voltage (Voc) of 0.86V was observed in the P1 ‐based PSCs, while the maximum short‐circuit current (Jsc) of 10.77 mA cm?2 was exhibited in the P2 ‐based PSCs under the illumination of AM 1.5, 100 mW cm?2. The alternating binary donor units and pending acceptor groups played a significant role in tuning photovoltaic properties for this class of the side‐chain D–A‐based copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4103–4110  相似文献   

13.
Segmented poly[2‐methoxy‐5‐(2‐ethylhexloxy)‐1,4‐phenylene vinylene] (MEH‐PPV)‐x's, which contain conjugated segments of varying lengths that are interspersed by nonconjugated units along the polymer backbone, were synthesized by selective thermal elimination of precursors containing controlled amounts (x) of a thermally labile group, namely, xanthate or dithiocarbamate (DTC). These precursors were in turn synthesized by competitive nucleophilic substitution of the Wessling polyelectrolyte with varying molar fractions of the respective nucleophiles—potassium ethyl xanthate or sodium diethyl dithiocarbamate. Methanol, used as the reaction medium, also served to introduce the second thermally less labile nucleophilic substituent. This approach for the preparation of segmented MEH‐PPV‐x is superior to the previous approach that used acetate as the thermally labile group, because it offers greater control over the composition despite a simpler synthetic procedure. Detailed studies of the thermal‐elimination kinetics of the three precursors, namely, acetate, xanthate, and DTC, both in solution and in thin films, were carried by in situ monitoring of their ultraviolet–visible spectra. These studies revealed that the rates of elimination followed the order, DTC > xanthate > acetate. The activation energies for the elimination were, however, not widely different (ca. 30 kcal/mol), suggesting that the rates primarily reflected differences in the pre‐exponential factor. After elimination, the segmented MEH‐PPV‐x samples exhibited the expected redshift in their absorption and fluorescence spectra with an increasing molar fraction (x) of eliminated segments, which was accompanied by a drastic reduction in the fluorescence quantum yields. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3929–3940, 2003  相似文献   

14.
We successfully synthesized new D‐A copolymers that employ 1,10‐bithienopyrrolodione (biTPD), thiophene, and selenophene‐based donor monomeric units. Two polymers, PBTPDEBT and PBTPDEBS , exhibited high degrees of crystallinity and unique polymer chain arrangements on the substrate, which is attributed to their enhanced coplanarity and intermolecular interactions between the polymer chains. Among the thin‐film transistor devices made of PBTPDEBT and PBTPDEBS , the annealed PBTPDEBS device displayed relatively high hole mobility, which was twice that of the PBTPDEBT ‐based device. In addition, an organic photovoltaic device based on a PBTPDEBS :PC71BM blend displayed the maximum power conversion efficiency of 3.85%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1228–1235  相似文献   

15.
A new series of high‐performance poly(arylene phosphine oxide) (PAPO) materials were synthesized postpolymerization from fluorinated poly(arylene phosphine oxide) (f‐PAPO). The new materials had increased solubility and film‐forming ability over the parent f‐PAPO. With the careful choice of the nucleophile, the thermal stability was also increased. The parent polymer f‐PAPO was synthesized via Ni(0) coupling from aromatic chloride and mesylate monomers. Both monomers were polymerized successfully to create polymers with intrinsic viscosities of 0.235 and 0.123 dL/g, respectively. The higher molecular weight f‐PAPO gave a glass transition of 320 °C and a char yield of 54% at 650 °C in air. The substitution of f‐PAPO via nucleophilic aromatic substitution produced PAPO thermoplastics with significant changes in the properties. The largest increase in the thermal stability relative to f‐PAPO was from 563 to 600 °C 10% weight‐loss values in nitrogen after the displacement of fluoride by 4‐aminophenol, which yielded poly[4‐(4‐aminopheonxyphenyl)bis(4′‐phenyl)phosphine oxide]. Additionally, the char yield increased from 54 to 71% in air at 650 °C. The solubility of the parent polymer was improved after substitution with 3‐tert‐butylphenol, n‐nonylamine, and poly(ethylene glycol)monomethyl ether. All of these became soluble in chloroform, N,N‐dimethylacetamide, and dimethyl sulfoxide. Copolymers were synthesized with 2,5‐dichloro‐4′‐fluorobenzophenone to improve the solubility of f‐PAPO without the loss of thermal stability. These copolymers also underwent nucleophilic aromatic substitution to create an epoxy cure agent that was used with the DEN 431 resin. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2277–2287, 2003  相似文献   

16.
A new phosphorus‐containing aromatic diamine, 1,4‐bis(4‐aminophenoxy)‐2‐(6‐oxido‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl) phenylene ( 3 ) was synthesized by the nucleophilic aromatic substitution of 2‐(6‐oxido‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl)‐1,4‐dihydroxy phenylene ( 1 ) with 4‐fluoronitrobenzene, followed by catalytic hydrogenation. Light color, flexible, and creasable polyimides with high molecular weight, high glass transition, high thermal stability, improved organosolubility, and good oxygen plasma resistance were synthesized from the condensation of ( 3 ) with various aromatic dianhydrides in N,N‐dimethylacetamide, followed by thermal imidization. The number‐average molecular weights of polyimides are in the range of 7.0–8.3 × 104 g/mol, and the weight‐average molecular weights are in the range of 12.5–16.5 × 104 g/mol. The Tgs of these polyimides range from 230 to 304 °C by differential scanning calorimetry and from 228 to 305 °C by DMA. These polyimides are tough and flexible, with tensile strength at around 100 MPa. The degradation temperatures (Td 5%) and char yields at 800 °C in nitrogen range from 544 to 597 °C and 59–65 wt %, respectively. Polyimides 5c and 5e , derived from OPDA and 6FDA, respectively, with the cutoff wavelength of 347 and 342 μm, respectively, show very light color. These polyimides also exhibit good oxygen plasma resistance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2897–2912, 2007  相似文献   

17.
18.
Improved reaction conditions for the preparation of poly(p‐phenylene sulfide) (PPS) directly from bis(4‐bromophenyl) disulfide (BBD) have been established. Heating BBD with magnesium metal afforded only a low molecular weight polymer. PPS with a melting temperature around 280 °C was obtained from BBD in the presence of sodium carbonate or zinc metal. The best results were obtained with the addition of a catalytic amount of KI to the zinc–BBD mixture. Polymers prepared by the above methods are semicrystalline and dissolve in 1‐chloronaphthalene and have properties comparable to commercial PPS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 900–904, 2006  相似文献   

19.
We report the crystalline behavior of poly(3‐dodecylthiophene) (P3DDT) in aged toluene solution and link structure differences with the nature of seed nuclei related to various dissolution way. By directly stirring the P3DDT toluene solution for dissolution, the surviving fragments served as seed nuclei and star‐like nanofibers were formed upon aging. While by heating the P3DDT solution for complete dissolution followed by cooling, the seed nuclei came from the π–π stacking of the planarized P3DDT chains and linear nanofibers were formed upon aging. Formation mechanisms and kinetics of different nanofibers are discussed in detail. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1268–1272  相似文献   

20.
A series of aromatic polyimides (PIs) containing pyridazine or pyrimidine in their main chains has been developed. All of the PIs were prepared from newly synthesized diamines, 3,6‐bis(4‐aminophenylenesulfanyl)pyridazine (APP), 4,6‐bis(4‐aminophenylenesulfanyl)pyrimidine (APPM) and aromatic dianhydrides, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA) and 4,4′‐oxydiphthalic anhydride (ODPA) via the conventional two‐step polycondensation. The PIs showed good thermal stability with 10% weight loss at temperatures above 450 °C and glass transition temperatures above 190 °C. Films with a 10‐μm thickness exhibited good optical transparency above 80% at 500 nm, high refractive indices ranging from 1.7218 to 1.7499, and low birefringence between 0.0066 and 0.0102. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4886–4984, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号