首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Possible existence of quark-matter in dense neutron-stars is discussed using Quantum Chromodynamical equation of state for cold degenerate quark-matter.  相似文献   

2.
For the first time, the experimental and theoretical evidence for the conversion of 4‐nitrobenzenethiol (4‐NBT) to p,p′‐dimercaptoazobenzene (DMAB) in Ag and Cu sols by surface photochemistry reaction is obtained with surface‐enhanced Raman scattering (SERS) spectroscopy. The SERS spectrum of 4‐NBT in Cu sol is identical to that of DMAB produced from 4‐aminothiophenol in Ag sol as reported in recent literature, thereby providing direct spectral evidence. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The formation of N‐trifluoromethylsulfonyl‐2‐vinylaziridine and N‐trifluoromethylsulfonyl‐3‐pyrroline by the reaction of the singlet and triplet trifluoromethanesulfonylnitrenes with s‐cis‐ and s‐trans‐1,3‐butadienes was studied theoretically at the B3LYP/6‐311++G(d,p) and M06‐2X/6‐311++G(d,p) levels of theory. The singlet trifluoromethanesulfonylnitrene adds to s‐cis‐ and s‐trans‐1,3‐butadiene exothermally in one step to give the product of 1,2‐cycloaddition, N‐trifluoromethylsulfonyl‐2‐vinylaziridine, the energy decreasing by 88.5 and 86.2 kcal/mol at the B3LYP level and by 105.2 and 103.0 kcal/mol at the M06‐2X level, respectively. The formed 2‐vinylaziridine can undergo rotation about the C(2)–Csp2 bond with the barrier not exceeding 3.5 kcal/mol and to rearrange into N‐trifluoromethylsulfonyl‐3‐pyrroline. The triplet trifluoromethanesulfonylnitrene reacts with s‐cis‐ and s‐trans‐1,3‐butadiene in two steps. The first exothermic step is the formation of the triplet diradical adducts. The second step is the spin inversion with the energy raising by 5.8 and 17.8 kcal/mol at the B3LYP level and by 11.0 and 20.8 kcal/mol at the M06‐2X level for the adducts to s‐cis‐ and s‐trans‐1,3‐butadiene, respectively. Recombination of the radical centers occurs selectively to give N‐trifluoromethylsulfonyl‐2‐vinylaziridine that is exothermally rearranged into N‐trifluoromethylsulfonyl‐3‐pyrroline with the energy barrier of 40 kcal/mol at the B3LYP level and of 50 kcal/mol at the M06‐2X level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Within the past 20 years, particle size analysis with laser diffraction (LD) has been subject to rapid development, extending the size range stepwise from 1–200 μm to about 0.1–3500 μm. The limits of LD are discussed in terms of light sources, the influence of the beam diameter, special Fourier optics and a new detector design. It is shown that the size range is not only restricted by the wavelength of the laser and the transmission limits of the medium. Its extension is mainly related to improvements in the measurement of the angular intensity distribution. Influences from stability and flow dominate on the coarse side of the measuring range. On the fine side, the spatial extension of aerosols and the resulting demand for extended working distances can be covered only in a parallel laser beam. Extended Fourier optics in combination with an adapatable beam expansion technique and a detector with virtual borders between semicircular elements overcome the existing limits and extend the size range to a lower limit of about 0.05 μm and an upper limit above 10 mm. The sensititivity limit of LD is approaching that of single particle counting techniques. For medical spray and inhaler applications, a 0.1% optical concentration can be converted to particle size distributions even for time-resolved analyses with sample intervals of a few milliseconds. The reproducibility of the sensor, with a standard deviation typically much less than 0.5%, is no longer the limiting factor. The reproducibility of the results is mainly dominated by the reproducibility of sampling, sample splitting, dispersion and the contamination of the optical path. The latter can be improved by the control of flow, especially for in-line and inhaler applications.  相似文献   

5.
Raman spectra of the Cl3CCHO/CCl4 and Cl3CCHO/C6D12 binary systems were recorded as a function of the mole fraction. Features originating from self‐aggregates of chloral (trichloroethanal, trichloroacetaldehyde—TCAA) molecules were detected in different spectral regions. The most pronounced changes were observed in the vicinity of the ν(CO) and ν(C H) stretching vibration bands. Using two‐dimensional correlation spectroscopy (2D‐COS), evolving‐factor analysis (EFA) and multivariate curve resolution (MCR), dimer bands were identified, and their positions were determined. The ν(C H) stretching vibration band in dimers was blue‐shifted by nearly 18 cm−1, whereas the ν(CO) dimer band was red‐shifted by more than 5 cm−1. For these bands, the observed shifts were accompanied by an almost twofold change in the bandwidth, from approximately 19 and 6 cm−1 for dilute solutions (x = 0.05) to 36.6 and 11.5 cm−1, respectively, in pure TCAA. The formation of dimers was confirmed by multivariate analysis of the Raman spectra of chloral recorded as a function of temperature. Analogous analysis of dichloroacetyl chloride (DCAC) spectra gave an 8.9 cm−1 blue shift for the ν(C H) vibration band and − 5.5/− 10.1 cm−1 shifts for the ν(CO) stretching vibrations of the two conformers present. To facilitate the interpretation of experimental findings, the optimized geometries and vibrational wavenumbers of the Cl3CCHO/HCl2CCClO molecules and (Cl3CCHO)2/(HCl2CCClO)2 dimers were calculated at the B3LYP/6‐311 + + G(3df,3pd) level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
2‐(Pyrrol‐2‐ylmethylene)‐1,3‐indandione ( 4 ) and 2‐(pyrrol‐2‐ylmethylene)‐3‐dicyanomethylidene‐1‐indanone ( 5 ) were synthesized. Multinuclear and 2D‐NMR, IR, UV spectroscopic investigations as well as quantum chemical calculations showed the presence of strong hydrogen bonding in these molecules. For both molecules, the presence of two conformers, with and without H‐bond, was experimentally detected in the basic solvents (DMSO, acetone, pyridine) and the solvate complexes were theoretically calculated. Specific behavior of the intramolecular H‐bonded complexes different from that of the intermolecular H‐complexes is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This brief report is an extension of our recent studies of Ψ and Υ production cross sections in proton-proton collisions with E \(=\sqrt {s}=13\) TeV to E = 5 and E =14 TeV, using the mixed heavy quark hybrid theory in which the Ψ(2S) and Υ(3S) are 50 % hybrid states. Also, comparison with recent experiments at E = 7 TeV are used to test the mixed heavy hybrid theory.  相似文献   

8.
“What is heat?” was the title of a 1954 article by Freeman J. Dyson, published in Scientific American. Apparently, it was appropriate to ask this question at that time. The answer is given in the very first sentence of the article: heat is disordered energy. We will ask the same question again, but with a different expectation for its answer. Let us imagine that all the thermodynamic knowledge is already available: both the theory of phenomenological thermodynamics and that of statistical thermodynamics, including quantum statistics, but that the term “heat” has not yet been attributed to any of the variables of the theory. With the question “What is heat?” we now mean: which of the physical quantities deserves this name? There are several candidates: the quantities Q, H, Etherm and S. We can then formulate a desideratum, or a profile: What properties should such a measure of the quantity or amount of heat ideally have? Then, we evaluate all the candidates for their suitability. It turns out that the winner is the quantity S, which we know by the name of entropy. In the second part of the paper, we examine why entropy has not succeeded in establishing itself as a measure for the amount of heat, and we show that there is a real chance today to make up for what was missed.  相似文献   

9.
The formation of intramolecular hydrogen bonding by certain N‐substituted 2‐acylpyrroles has been demonstrated by B3LYP/aug‐cc‐pVDZ calculations, the quantum theory of atoms in molecules, and the natural bond orbital method. Total electron energy densities HBCP at the bond critical point of the H?O bond were applied to analyze the strength of these interactions. The relations between quantum theory of atoms in molecules, carbonyl stretching vibrational modes νC = O, and natural bond orbital parameters associated with the formation of the C–H?O interaction have been established. The short contacts were found experimentally in the crystal structure of a new 2‐acylpyrrole derivative 5‐chloro‐2‐oxopentyl‐1‐(5‐chloro‐2‐oxopentyl)pyrrolo‐2‐carboxylate. The influence of 2‐ and N‐substitution of 2‐acylpyrroles on C‐H?O interaction energy is discussed. It was found that the methylene group may act as a proton donor leading to a red‐shift or blue‐shift phenomenon of the νC–H stretching mode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The broad energy distributions of the condensing particles typically encountered in ion assisted vapor deposition techniques are often a drawback when attempting to understand the effect of the energetic bombardment on the film properties. In the current study, a monoenergetic Al+ beam generated by a filtered cathodic arc discharge is employed for the deposition of alumina (Al2O3) films at well defined Al+ ion energies between 4 eV and 200 eV at a substrate temperature of 720 °C. Structural analysis shows that Al+ energies of 40 eV or larger favor the formation of the thermodynamically stable α‐Al2O3 phase at the expense of other metastable Al2O3 polymorphs. The well defined ion energies are used as input for Monte‐Carlo based simulations of the ion–surface interactions. The results of these simulations reveal that the increase of the Al+ ion energy leads to an increase in the fraction of ions subplanted into the growing film. These findings underline the previously not considered role of subsurface processes on the phase formation of ionized physical vapor deposited Al2O3 films. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Allan Vurma  Jaan Ross   《Journal of voice》2002,16(3):383-391
Singing teachers sometimes characterize voice quality in terms of "forward" and "backward" placement. In view of our traditional knowledge about voice production it is hard to explain any possible acoustic or articulatory differences between the voices so "placed." The analysis of the teachers' expert opinions demonstrates that, in general, a voice placed "forward" indicates a desirable quality that students should attain by the end of their studies. Productions that were perceived as "forward" and "backward" were selected from the listening test. The acoustic analysis of those productions reveals that the voice quality in the case of "forward" placement correlates with higher frequencies of the second (F2) and third (F3) formants, as well as with a more salient "singer's formant" in the voice. The five basic vowels were included in the investigation.  相似文献   

12.
In general, both stoichiometric and catalytic reactions of organometallic complexes involve breaking and forming metal–ligand bonds. Therefore, an evaluation of the thermodynamics of such reactions requires the knowledge of metal–ligand bond energies (BDEs). The homolytic Fe? C bond dissociation energies [i.e., ΔHhomo(Fe? C)s] of 12 para‐substituted benzyldicarbonyl(η5‐cyclopentadienyl)iron, p‐G‐C6H4CH2Fp [1,G = NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, NMe2; Fp = (η5‐C5H5)(CO)2Fe] and 12 para‐substituted α‐cyanobenzyldicarbonyl (η5‐cyclopentadienyl)iron, p‐G‐PANFp [2,PAN = C6H4CH(CN)] were studied using Hartree–Fock (HF) and density functional theory (DFT) methods with large basis sets. The results show that BP86 and TPSSTPSS can provide the best price/performance ratio and more accurate predictions in the study of ΔHhomo(Fe? C)s. The B3LYP method satisfactorily predicts the α and remote substituent effects on ΔHhomo(Fe? C)s [ΔΔHhomo(Fe? C)s]. The fair correlations [r = 0.97 (g, 1), 0.99(g, 2)] of ΔΔHhomo(Fe? C)s of series 1 and 2 with the substituent σ constants imply that the para substituent effects on ΔHhomo(Fe? C)s originate mainly from polar effects, but those on radical stability originate from both spin delocalization and polar effects. The molecule stabilization effects (MEs) causes that not only the magnitude of ΔΔHhomo(Fe? C)s(1) varies significantly but also the direction changes from S‐pattern to O‐pattern. ΔΔHhomo(Fe? C)s(2) were found to conform to the Capto‐dative Principle. The detailed knowledge of the factors that determine the Fp? C bond strengths would greatly aid in understanding reactivity patterns in many processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The reaction channels of di‐tert‐butylcarbene ( 2 ), its radical anion, ( 3 ) and its radical cation ( 4 ) were investigated theoretically by using DFT/B3LYP with 6‐31+G(d) basis set and 6‐311+G(2d,p) for single point energy calculations. Conversion of the neutral carbene 2 to the charged species 3 and 4 results in significant geometric changes. In cation 4 two different types of C? (CH3)3 bonds are observed: one elongated sigma bond called “axial” with 1.61 Å and two normal sigma bonds with a bond length of 1.55 Å. Species 2 and 4 have an electron deficient carbon center; therefore, migration of CH3 and H is observed from adjacent tert‐butyl groups with low activation energies in the range of 6–9 kcal/mol like similar Wagner–Meerwein rearrangements in the neopentyl‐cation system. Neutral carbene 2 shows C? H insertion to give a cyclopropane derivative with an activation energy of 6.1 kcal/mol in agreement with former calculations. Contrary to species 2 and 4 , the radical anion 3 has an electron rich carbon center which results in much higher calculated activation energies of 26.3 and 42.1 kcal/mol for H and CH3 migrations, respectively. NBO charge distribution indicates that the hydrogen migrates as a proton. The central issue of this work is the question: how can tetra‐tert‐butylethylene ( 1 ) be prepared from reaction of either species 2 , 3 , or 4 as precursors? The ion–ion reaction between 3 and 4 to give alkene 1 with a calculated reaction enthalpy of 203.5 kcal/mol is extremely exothermic. This high energy decomposes alkene 1 after its formation into two molecules of carbene 2 spontaneously. Ion–molecule reaction of radical anion 3 with the neutral carbene 2 is a much better choice: via a proper oriented charge–transfer complex the radical anion of tetra‐tert‐butylethylene (11) is formed. The electron affinity of 1 was calculated to be negligible. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
15.
The intramolecular electron transfer on several 1,3‐dinitrobenzene radical anions with different substituents on position 5 was studied by electron paramagnetic resonance and optical spectroscopies in MeCN. The radical anions are all charge‐localized mixed valence species, as is common for meta‐substituted dinitrobenzenes. Rate constants for the electron transfer reaction were obtained by the Marcus–Hush analysis of the intervalence optical bands assuming quartic‐augmented energy surfaces and solvent‐controlled dynamics. These calculated rate constants match quite well the experimental ones obtained by simulation of the electron paramagnetic resonance spectra, which rules out bridge‐reduced states as intermediates in the reaction path and confirms the superexchange mechanism. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Modifications of the Swain–Scott equation (log k/k0) = sn) give an equation log k1 = (E + sN1′); k1 is the rate constant, E is an electrophilicity parameter, N1′ is a solvent nucleophilicity parameter and s is an electrophile‐specific sensitivity parameter. The equation is tested using over 300 published first‐order rate constants (k1) for decay of a range of benzhydrylium cations in various solvents, on which the published N1 scale of solvent nucleophilicity is based (S. Minegishi, S. Kobayashi and H. Mayr, J. Am. Chem. Soc. 2004, 126, 5174–5181) using the alternative equation log k = s(E + N1), in which s is a nucleophile‐specific parameter. The modified (E + sN1′) equation provides a revised N1′ scale of solvent nucleophilicity, and a more precise fit, with less than half the number of adjustable parameters. It is found that the sensitivities of the benzhydrylium cations to changes in solvent nucleophilicity decrease slightly as reactivity increases, in contrast to s(E + N) equations, which show no trends in s values. It is proposed that more reliable N scales can be defined using (E + sN), because N is determined directly from definitions, and residual errors (e.g. experimental or due to solvation effects) can be incorporated into the slope and intercept. The complex reasons for the success of equations of the type log k = s(E + N) are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Two common methods for recording absolute photoluminescence quantum yields using integrating spheres are discussed. These methods are developed from a theoretical standpoint, with a discussion of the assumptions made in each and their principle differences, and practical comparisons between the two are made using a range of different materials and sample types. It is shown that despite the underlying theoretical differences both methods ultimately yield very similar experimental results. Additionally, the concept of a time‐dependent quantum yield is examined and preliminary studies along these lines are presented in the form of an investigation into the photo‐oxidation of a luminescent polymer film.  相似文献   

18.
Using time-resolved photoelectron spectroscopy, the decay channels of AuO2 and Au2O2 following photoexcitation with 3.1-eV photons have been studied. For AuO2, a state with a rather long lifetime of 30 ps has been identified. Its decay path could not be determined but photodesorption can be excluded. For Au2O2, the spectra indicate O2 desorption after 3.1-eV photoexcitation on a time scale of 1 ps. While comparing these results on Au n O2 with analogous data on Ag n O2 clusters, a discernible pattern emerges: for dissociatively bound O2(AuO2, Ag3O2), there are long-living excited states which do not decay by oxygen desorption, while for molecular chemisorption (Au2O2, Ag2O2, Ag4O2, Ag8O2), the 3.1-eV photoexcitation triggers fast O2 desorption with a high quantum yield.  相似文献   

19.
A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.  相似文献   

20.
采用脉冲激光沉积方法在单晶Si(100)衬底上制备出c轴取向的Zn1-xMgxO单晶薄膜,通过荧光光谱仪研究了薄膜的光致发光特性.实验结果表明,Mg含量增加,Zn1-xMgxO单晶薄膜的紫外发光峰蓝移,发光峰强度减弱,缺陷发光强度增强.同时发现,由于Mg的掺杂,引入了一些束缚能较大的局域束缚态.对于氧气氛下制备的样品,实验发现紫外峰和绿光带发光峰同时增强,但是R值减小,紫外峰红移.对绿光发光机理研究发现,绿光发光带主要与锌空位、氧间隙(Oi)或锌位氧(OZn)等缺陷有关,它是由多个缺陷发光峰组成,各缺陷发光峰强度相对变化导致了绿光发光带的整体移动. 关键词: 1-xMgxO薄膜')" href="#">Zn1-xMgxO薄膜 光致发光 脉冲激光沉积  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号