首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrated cations present in the electrochemical double layer (EDL) are known to play a crucial role in electrocatalytic CO2 reduction (CO2R), and numerous studies have attempted to explain how the cation effect contributes to the complex CO2R mechanism. CO2R is a structure sensitive reaction, indicating that a small fraction of total surface sites may account for the majority of catalytic turnover. Despite intense interest in specific cation effects, probing site-specific, cation-dependent solvation structures remains a significant challenge. In this work, CO adsorbed on Au is used as a vibrational Stark reporter to indirectly probe solvation structure using vibrational sum frequency generation (VSFG) spectroscopy. Two modes corresponding to atop adsorption of CO are observed with unique frequency shifts and potential-dependent intensity profiles, corresponding to direct adsorption of CO to inactive surface sites, and in situ generated CO produced at catalytic active sites. Analysis of the cation-dependent Stark tuning slopes for each of these species provides estimates of the hydrated cation radius upon adsorption to active and inactive sites on the Au electrode. While cations are found to retain their bulk hydration shell upon adsorption at inactive sites, catalytic active sites are characterized by a single layer of water between the Au surface and the electrolyte cation. We propose that the drastic increase in catalytic performance at active sites stems from this unique solvation structure at the Au/electrolyte interface. Building on this evidence of a site-specific EDL structure will be critical to understand the connection between cation-dependent interfacial solvation and CO2R performance.

Site-specific vibrational probes were used to elucidate the interfacial solvation structure between catalytic active sites and inactive sites on a Au electrode to reveal a unique, opposing cation-dependent double layer structure at active sites.  相似文献   

2.
Adsorption data of an organic cation (propranololium chloride) and an organic anion (sodium 1-naphthalene sulfonate) were measured by frontal analysis on two RPLC adsorbents, Symmetry-C18 and XTerra-C18, with aqueous solutions of methanol as the mobile phases. The influence of supporting neutral salts on the adsorption behavior of these two ions are compared. The Henry constants are close (H approximately 5). The four sets of isotherm data are all well accounted for using the bi-Moreau model. However, the isotherms of the two ions behave differently at high concentrations. The initial behaviors of all the isotherms are antilangmuirian but remain so in a much wider concentration range for the cation than for the anion, due to its stronger adsorbate-adsorbate interactions on the low-energy adsorption sites. The retention times of both ions increase with increasing concentration of neutral salt in the mobile phase, suggesting the formation of ion-pair complexes, with Cl- for the cation and with Na+ for the anion. The adsorbate-adsorbate interactions vanish in the presence of salt and the bi-Moreau isotherm model tends toward a bi-Langmuir model. Differences in adsorption behavior are also observed between the cation and the anion when bivalent inorganic anions and cations, respectively, are dissolved in the mobile phase. High concentration band profiles of 1-naphthalene sulfonic acid are langmuirian, except in the presence of a trivalent cation, while those of propranolol are antilangmuirian under certain conditions even with uni- or divalent cations.  相似文献   

3.
Adsorption and chemisorption of H2 in mordenite is studied using ab initio density functional theory (DFT) calculations. The geometries of the adsorption complex, the adsorption energies, stretching frequencies, and the capacity to dissociate the adsorbed molecule are compared for different active sites. The active centers include a Br?nsted acid site, a three-coordinated surface Al site, and Lewis sites formed by extraframework cations: Na+, Cu+, Ag+, Zn2+, Cu2+, Ga3+, and Al3+. Adsorption properties of cations are compared for a location of the cation in the five-membered ring. This location differs from the location in the six-membered ring observed for hydrated cations. The five-membered ring, however, represents a stable location of the bare cation. In this position any cation exhibits higher reactivity compared with the location in the six-membered ring and is well accessible by molecules adsorbed in the main channel of the zeolite. Calculated adsorption energies range from 4 to 87 kJ/mol, depending on electronegativity and ionic radius of the cation and the stability of the cation-zeolite complex. The largest adsorption energy is observed for Cu+ and the lowest for Al3+ integrated into the interstitial site of the zeolite framework. A linear dependence is observed between the stretching frequency and the bond length of the adsorbed H2 molecule. The capacity of the metal-exchanged zeolite to dissociate the H2 molecule does not correlate with the adsorption energy. Dissociation is not possible on single Cu+ cation. The best performance is observed for the Ga3+, Zn2+, and Al3+ extraframework cations, in good agreement with experimental data.  相似文献   

4.
A new chromatographic method estimating the degree of heterogeneity of RPLC packing materials is based on the results of systematic measurements of the adsorption data in a wide concentration range for selected probe compounds. These data are acquired by frontal analysis (FA), modeled, and used for the calculation of the adsorption energy distribution (AED). Four compounds were used, two neutral compounds of different molecular sizes (caffeine and phenol) and two ionizable compounds of opposite charges, 2-naphthalene sulfonate, an anion, and propranololium, a cation. This work was done on a C30-bonded silica stationary phase (Prontosil-C30), using the same aqueous mobile phase (30% methanol, v/v) for all compounds, except that sodium chloride (25 mM) was added to elute the ionizable compounds. All four adsorption isotherms have Langmuirian behavior. The AEDs are tri-modal for phenol, quadri-modal for caffeine. The total saturation capacity of the stationary phase is four-fold lower for caffeine than for phenol, due in part to its larger molecular size. The equilibrium constants on the low-energy sites of types 1 and 2 are eight-fold larger. These two types of sites characterize the heterogeneity of the bonded layer itself. The density of the high-energy sites of types 3 and 4 is higher for caffeine, suggesting that caffeine molecules can be accommodated in some hydrophobic cages into which smaller molecules like phenol cannot. These high-energy types of sites characterize the heterogeneity of the whole stationary phase (silica support included). The ionizable compounds have larger molecules than the neutral ones and, accordingly, a lower relative density of sites of type 2 to sites of type 1. A tri-modal and a quadri-modal energy distributions were observed for the 2-naphthalene sulfonate anion and the propranololium cation, respectively. The fourth types of sites measured and its unusually high equilibrium constant are most probably due to ion-exchange interactions between the non-endcapped ionized silanols and the propranololium ion. No such strong interactions are observed with the anionic compound.  相似文献   

5.
This computational study performed using the density functional theory shows that hydrated and non-hydrated tetrahedral and octahedral kaolinite mineral surfaces in the presence of a cation adsorb the nucleic acid bases thymine and uracil well. Differences in the structure and chemistry of specific clay mineral surfaces led to a variety of DNA bases adsorption mechanisms. The energetically most predisposed positions for an adsorbate molecule on the mineral surface were revealed. The target molecule binding with the surface can be characterized as physisorption, which occurs mainly due to a cation-molecular oxygen interaction, with hydrogen bonds providing an additional stabilization. The adsorption strength is proportional to the number of intermolecular interactions formed between the target molecule and the surface. From the Atoms in Molecules analysis and comparison of binding energy values of studied systems it is concluded that the sorption activity of kaolinite minerals for thymine and uracil depends on various factors, among which are the structure and accessibility of the organic compounds. The adsorption is governed mostly by the surface type, its properties and presence of cation, which cause a selective binding of the nucleobase. Adsorbate stabilization on the mineral surface increases only slightly with explicit addition of water. Comparison of activity of different studied kaolinite mineral models reveals the following order for stabilization: octahedral-Na-water > octahedral-Na > tetrahedral-Na > tetrahedral-Na-water. Further investigation of the electrostatic potentials helps understanding of the adsorption process and confirmation of the active sites on the kaolinite mineral surfaces. Based on the conclusions that clay mineral affinity for DNA and RNA bases can vary due to different structural and chemical properties of the surface, a hypothesis on possible role of clays in the origin of life was made.  相似文献   

6.
Fourier transform surface plasmon resonance (FT-SPR) was utilized to study specific and non-specific interactions between proteins and a biotinylated polymer film by monitoring adsorptions of streptavidin (SAv) and bovine serum albumin (BSA) on the polymer films. The biotinylated polymer, poly(lactide-co-2,2-dihydroxymethyl-propylene carbonate-graft-biotin) [P(LA-co-DHC/biotin)], was prepared by ring-opening copolymerization of lactide and a OH-bearing cyclic carbonate monomer, followed by biotinylation of the OH groups. The copolymer was coated onto the FT-SPR chip and vacuum-dried, hydrated at 70°C, and treated with a blocking agent respectively to achieve different surface status. The FT-SPR results showed that the vacuum-dried film had the most BSA adsorption; hydration treatment led to migration of the biotin moieties from inner film to surface and thus resulted in less BSA adsorption; blocking layer on the polymer surface saturated the active sites for physical and chemical adsorptions on the surface and thus weakened the BSA adsorption. Adsorption of SAv displayed similar polymer-surface-status dependence, i.e., more adsorption on vacuum-dried surface, less adsorption on hydrated surface and the least adsorption on blocked surface. Compared with BSA, SAv showed more enhanced adsorptions on P(LA-co-DHC/biotin) surface because of the specific interaction of biotin moieties in the polymer with SAv molecules, especially on the blocked surface. The above semi-quantified results further indicate that the FT-SPR system is suitable for investigating interactions between polymer surface and bio-molecules.  相似文献   

7.
Molecular Dynamics simulations have been carried out in NaX and NaY Faujasite systems to deepen understanding of the cation rearrangement during the CO2 adsorption process suggested by our recent diffusivity measurements. This study is a major contribution since the rearrangement of the cations in Faujasite, the most promising adsorbent for CO2 storage, can represent a significant breakthrough in understanding the adsorption and diffusion processes at the mircroscopic scale. For NaY, it has been shown that at low and intermediate loadings, SII cations can migrate toward the center of the supercage due to strong interactions with the adsorbates, followed by a hopping of SI'cation from the sodalite cage into the supercage to fill the vacant SII site. The SI cations are only displaced at a higher loading, leading to cation de-trapping out of the double six rings into the vacant SI' sites. For NaX, the SIII' cations which occupy the most accessible adsorption sites move significantly upon coordination to the carbon dioxide molecules. The SI' and SII cations remain consistently located in their initial sites whatever the loading. Indeed, the most probable migration mechanism involves SIII' cation displacements into nearby vacant SIII' sites.  相似文献   

8.
The molecular statistical method for evaluating the distribution of active sites of various adsorbents relative to their energies has been improved. This method is used not only for the treatment of experimental data on the adsorption of hydrocarbons on various adsorbents, which is the usual procedure, but also data on the adsorption of polar water and methanol molecules on the active sites of adsorbent surfaces. Two types of active sites differing in energy have been shown to exist on the surface of graphitized carbon black, the complex shungite carbon/mineral adsorbent, and modified Silochrom. Chromatographic, calorimetric, and structural adsorption data were used to establish the relationship between the observed maxima of the energy distribution function of the adsorption sites with concrete adsorption sites or pores of the surface, on which the molecules are adsorbed. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 44, No. 5, pp. 315–320, September–October, 2008.  相似文献   

9.
The difference in adsorption behavior between a conventional monomeric endcapped C18 stationary phase (3.43 micromol/m2) and an endcapped polymeric RP-Amide phase (3.31 micromol/m2) was investigated. The adsorption isotherms of four compounds (phenol, caffeine, sodium 2-naphthalene sulfonate, and propranololium chloride) were measured by frontal analysis (FA) and the degree of heterogeneity of each phase for each solute was characterized by their adsorption energy distributions (AED), derived using the Expectation-Maximization method. The results show that only certain analytes (phenol and 2-naphthalene sulfonate) are sensitive to the presence of the polar embedded amide groups within the RP phase. Their binding constants on the amide-bonded phase are significantly higher than on conventional RPLC phases. Furthermore, an additional type of adsorption sites was observed for these two compounds. However, these sites having a low density, their presence does not affect much the retention factors of the two analytes. On the other hand, the adsorption behavior of the other two analytes (caffeine and propranololium chloride) is almost unaffected by the presence of the amide group in the bonded layer. Strong selective interactions may explain these observations. For example, hydrogen-bond interactions between an analyte (e.g., phenol or naphthalene sulfonate) and the carbonyl group (acceptor) or the nitrogen (donor) of the amido-embedded group may take place. No such interactions may take place with either caffeine or the cation propranololium chloride. This study confirms the hypothesis that analytes have ready access to locations deep inside the bonded layer, where the amide groups are present.  相似文献   

10.
The criterion conventionally used to judge bond activation in molecules adsorbed on active sites of heterogeneous catalysts is the bathochromic shift of the corresponding IR absorption bands. The intensity of these bands, which characterizes bond polariability, can be used as an additional bond activation criterion. This new spectral criterion is particularly promising for acid and acid-base catalysis, in which the activation of adsorbed molecules is due to their polarization by active sites. Examples are provided here to illustrate the fruitfulness of the new approach. These examples include judging the strength of Brønsted acid sites from the intensity of the OH stretching band and an analysis of the dissociative adsorption and dehydrogenation of light paraffins on metal cation forms of zeolites and of proton transfer from Brønsted acid sites to adsorbed paraffin molecules.  相似文献   

11.
Recently, it has been shown that adsorption of gases on solid surfaces often leads to repulsive forces between adsorbate molecules. In this paper, adsorption of molecules on a one-dimensional lattice is considered for repulsive interactions between adsorbate molecules. Exact adsorption isotherms are calculated and analyzed for finite and infinite chains of active sites (i.e., a one-dimensional lattice). Although the mathematical solution for the one-dimensional lattice is known for attractive and repulsive systems, the effects of intermolecular repulsions on adsorption behavior have not been studied in detail previously. Similarly, though the mathematics for the one-dimensional lattice has been solved for any arbitrary lattice length, the effect of finite size on adsorption isotherms for repulsive adsorbate interactions has never been examined. This paper shows that spatial confinement and strong attraction to active sites can cause compression of an adsorbed phase and that repulsive interactions between adsorbed molecules result in steps in the adsorption isotherms. For higher chemical potentials, the density increases until saturating at the lattice capacity. These steps in the adsorption isotherm have not been observed in previous studies of lattice systems. For small lattices, the adsorption behavior was found to be fundamentally different for even and odd values of lattice length. Lattices with an even number of lattice sites can have two steps in the adsorption isotherm, whereas systems with an odd number of sites only have a single step occurring at a coverage slightly greater than half the lattice capacity.  相似文献   

12.
ABSTRACT

Ar and N2 high resolution adsorption volumetry coupled to the Derivative Isotherm Simulation method was applied on nine homoionic illite samples (Li ?, Na ? K ? Rb ? Cs ? Mg ? Ca ? Sr ? and Ba ? illites). By comparing the adsorption isotherms it appears that the nature of the surface cation strongly influences the adsorption mechanisms.

The lateral and basal surface areas can only be derived from argon adsorption on monovalent samples. The argon adsorption energies varv with the nature of the surface compensating cation. Both cation size and electronegativity are involved. These interactions can, in first approach, be expressed in terms of surface tensionsγsv LW. Specific interactions appear when nitrogen is used revealing high energy adsorption sites located on basal faces. These sites could be related to some polar properties of the surface.  相似文献   

13.
采用密度泛函理论和经典分子动力学模拟研究了盐水溶液中Na+、Cu2+、Zn2+、Cl-与丙氨酸分子间的相互作用对丙氨酸分子缔合的影响. 密度泛函理论的计算结果显示丙氨酸分子与Na+、Cu2+、Zn2+、Cl-之间的相互作用可增强其电荷分离. 经典分子动力学模拟结果显示在水溶液中两性离子形式的丙氨酸存在三种缔合结构.盐水溶液中, 阳离子、阴离子与丙氨酸间的相互作用均能一定程度上减弱丙氨酸分子的缔合. 但是阳离子与丙氨酸间的相互作用明显受离子水合作用的影响. 由于Cu2+水合作用较强, 虽在气相中Cu2+与丙氨酸分子之间相互作用明显比Na+强, 但是在水溶液中则情况刚好相反. 在ZnCl2稀溶液中, Zn2+与丙氨酸间的相互作用被其第一水合壳层隔开. 但这种相互作用仍能明显影响丙氨酸分子的缔合, 这与Zn2+的水合壳层特征有关. 另外, 离子与丙氨酸之间的相互作用, 不仅会削弱丙氨酸的缔合, 也可导致丙氨酸分子间的缔合结构发生转变. 离子浓度也会影响其与丙氨酸分子间的缔合形式以及丙氨酸的缔合结构.  相似文献   

14.
本文用气相色谱法在250-300 ℃的范围内, 测定了苯在不同Na:H比的NaHY的初始吸附热. 结果发现 ,随着Na含量的减少, 苯在NaHY上的吸附热作阶梯式的下降, 即由NaY上的62.4 kJ·mol~(-1)经过60.3 kJ.mol~(-1)降至HY上的54.6 kJ mol~(-1). 红外光谱的研究结果表明, 苯在NaY上吸附产生的1848和1984 cm~(-1)一对吸收带,在HY上吸附产生的1832和1975cm~(-1)一对吸收带,可以分别表征苯和NaHY中的Na~+以及H~+的作用. 根据上述结果讨论了苯在NaHY上吸附位的性质、吸附作用的强弱以及Na~+离子的定位状况。  相似文献   

15.
Gas adsorption on zeolites constitutes the base of many technological applications of these versatile porous materials. Quite often, especially when dealing with small molecules, individual extra-framework (exchangeable) cations are considered to be the adsorption site on which molecules coming from a gas phase form the corresponding adsorption complex. Nonetheless, while that can be the case in some instances, recent research work that combines variable temperature infrared spectroscopy with periodic DFT calculations showed that some types of adsorption sites involve two or more cations, which constitute dual and multiple cation sites, respectively. Adsorption complexes formed on these cationic adsorption sites differ in both structure and stability from those formed on a single cation alone. Examples concerning CO, CO(2) and H(2) adsorption on alkali and alkaline-earth metal exchanged zeolites are reviewed, with the double purpose of clarifying concepts and highlighting their relevance to practical use of zeolites in such fields as gas separation and purification, gas storage and heterogeneous catalysis.  相似文献   

16.
Molecular dynamics simulations were carried out to study the structure of ion clusters and hydration properties of KNO3 solution. The water molecule was treated as a simple-point-charge (SPC) model, and a four-site model for the nitrate ion was adopted. Both the Coulomb and Lennard-Jones interactions between all the charged sites were considered, and the long-range Coulomb electrostatic interaction was treated using Ewald summation techniques. The configuration of ionic pairs, the radial distribution function of the solution, and the effect of solution concentration on ionic hydration were studied in detail. It was found that there are ionic association phenomena in KNO3 solution and that the dimeric, triplet, solvent-separated ion pairs, and other complex clusters can be observed at high ionic concentration condition. As the concentration of solution decreases, the ionic hydration number increases, 5-7 for cation K+ and 3.5-4.7 for anion NO3-, which is in good agreement with former Monte Carlo and time-of-flight neutron diffraction results.  相似文献   

17.
The bicanonical statistical ensemble method has been used to calculate at the molecular level the free energy, entropy, and work of hydration of single-charged sodium cation in a model planar nanopore with structureless hydrophilic walls. The calculations have been performed in terms of a detailed many-particle model of intermolecular interactions calibrated with respect to experimental data on the free energy and enthalpy of the initial reactions of attachment in water vapor. In contrast to chlorine anion, at initial stages of formation, the hydration shell of sodium cation has a loose chain structure, which is reflected in the character of the interaction with pore walls and the behavior of entropy. Under the conditions of weakly hydrophilic walls, the system loses its stability; however, the stability remains preserved in a pore with strongly hydrophilic walls. Hydrophilic walls stabilize the system and shift the onset of hydration toward lower vapor pressures by several orders of magnitude.  相似文献   

18.
The hydrophobic-hydrophilic character of a series of microporous activated carbons was explored as a key factor in competitive adsorption of a non-polar compound from liquid phase. The selectivity of the carbon surface towards naphthalene was explored by performing the adsorption isotherms in water, cyclohexane and heptane. Solvent polarity and adsorbent hydrophobic character were found to strongly influence the adsorption capacity of naphthalene. In aqueous media, despite the non-polar character of the adsorbate, surface acidity lowered adsorption capacity. This is attributed to the competition of water from the adsorption sites, via H-bonding with surface functionalities and the formation of hydration clusters that reduce the accessibility and affinity of naphthalene to the inner pore structure. In organic media the uptake decreased due to competition of the hydrophobic solvent for the active sites of the carbon and to solvation effects. This competitive effect of the solvent is minimized in oxidized carbons as opposed to the trend obtained in aqueous solutions. The results confirmed that although adsorption of naphthalene strongly depends on the narrow microporosity of the adsorbent, competitive adsorption of the solvent for the active sites becomes important.  相似文献   

19.
HPLC columns were packed with quasi-spherical montmorillonite particles which were prepared by spray-drying and then thermally treated. Separations of phenylureas (linuron, neburon, diuron and monuron), phosphothioate phenyl esters (parathion, methyl parathion and paraoxon) and other smaller substituted benzenes were performed on the columns. The relative retention of the substituted phenyl pesticides demonstrated the important role polar substituents play in the eluate-surface interactions and the strong influence of steric factors on these interactions. The retention of the pesticides decreased sharply as the polarity of the mobile phase increased. The retention of the smaller substituted benzenes showed a similar trend, but for these smaller molecules this trend was partially counteracted by the increased accessibility of interlayer spaces due to swelling as the polarity of the liquid phase increased. The role of the exchangeable cation (Na+, Co2+ and Cu2+) in the adsorption was found to be complex. The cations determine both the strength of interaction, which increases with the valence of the cation, and the accessibility of the interlayer adsorption sites which decreased with the valence.  相似文献   

20.
In a companion paper, we describe the influence of the concentration and the nature of salts dissolved in the mobile phase (methanol:water, 40:60, v/v) on the adsorption behavior of propranolol (R'-NH2+ -R, Cl-) on XTerra-C18. The same experiments were repeated on a Symmetry-C18 column to compare the adsorption mechanisms of this ionic compound on these two very different RPLC systems. Frontal analysis (FA) measurements were first carried out to determine the best isotherm model accounting for the adsorption behavior of propranolol hydrochloride on Symmetry with a mobile phase without salt (and only 25% methanol to compensate for the low retention in the absence of salt). The adsorption data were best modeled by the bi-Moreau model. Large concentration band profiles of propranolol were recorded with mobile phases having increasing KCl concentrations (0, 0.002, 0.005, 0.01, 0.05, 0.1 and 0.2 M) and the best values of the isotherm coefficients were determined by the inverse method (IM) of chromatography. The general effect of a dissociated salt in the mobile phase was the same as the one observed earlier with XTerra-C18. Increasing the salt concentration increases the two saturation capacities of the adsorbent and the adsorption constant on the low-energy sites. The adsorption constant on the high-energy sites decreases and the adsorbate-adsorbate interactions tend to vanish with increasing salt concentration of the mobile phase. The saturation capacities decrease with increasing radius of the monovalent cation (Na+, K+, Cs+, etc.). Using sulfate as a bivalent anion (Na2SO4) affects markedly the adsorption equilibrium: the saturation capacities are drastically reduced, the high-energy sites nearly disappear while the adsorption constant and the adsorbate-adsorbate interactions on the low-energy sites increase strongly. The complexity of the thermodynamics in solution might explain the different influences of these salts on the adsorption behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号