首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
New diketopyrrolopyrrole (DPP)‐containing conjugated polymers such as poly(2,5‐bis(2‐octyldodecyl)‐3‐(5‐(pyren‐1‐yl)thiophen‐2‐yl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) (P(DTDPP‐alt‐(1,6)PY)) and poly(2,5‐bis(2‐octyldodecyl)‐3‐(5‐(pyren‐2‐yl)thiophen‐2‐yl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) (P(DTDPP‐alt‐(2,7)PY)) were successfully synthesized via Suzuki coupling reactions under Pd(0)‐catalyzed conditions. P(DTDPP‐alt‐(2,7)PY), incorporating 2,5‐bis(2‐octyldodecyl)‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione (DTDPP) at the 2,7‐position of a pyrene ring showed a lower band‐gap energy (E. = 1.65 eV) than the 1,6‐substituted analog, P(DTDPP‐alt‐(1,6)PY) (E = 1.71 eV). The energies of the molecular frontier orbitals of the substituted polymers were successfully tuned by changing the anchoring position of DTDPP from the 1,6‐ to the 2,7‐position of the pyrene ring. An organic thin‐film transistor fabricated using the newly synthesized P(DTDPP‐alt‐(2,7)PY), as a semiconductor material exhibited a maximum mobility of up to 0.23 cm2 V?1 s?1 (Ion/off ~ 106), which was much larger than that obtained using P(DTDPP‐alt‐(1,6)PY). This distinction is attributed to morphological differences in the solid state arising from differences between the geometrical configurations of DTDPP and the pyrene ring. In addition, the organic phototransistor devices made of P(DTDPP‐alt‐(2,7)PY) showed interesting photoinduced enhancement of drain current when irradiating the excitation light whose intensity is very small. Based on the photoinduced effect on IDS, photocontrolled memory could be realized under the variation of gate voltages. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
A “zigzag” naphthodithiophene‐based copolymer, poly[4,9‐bis(2‐ethylhexyloxy)naphtho[1,2‐b:5,6‐b′]dithiophene‐2,7‐diyl‐alt‐1,3‐(5‐heptadecan‐9‐yl)‐4H‐thieno[3,4‐c]pyrrole‐4,6‐dione] (P1) is synthesized and its properties are compared to “linear” naphthodithiophene‐based copolymer, poly[4,9‐bis(2‐ethylhexyloxy)naphtho[2,3‐b:6,7‐d′]dithiophene‐2,7‐diyl‐alt‐1,3‐(5‐heptadecan‐9‐yl)‐4H‐thieno[3,4‐c]pyrrole‐4,6‐dione] (P2). The field‐effect carrier mobilities and the optical, electrochemical, and photovoltaic properties of the copolymers are systematically investigated. The results suggest that the backbone of the copolymer structure significantly influences the band gap, electronic energy levels, carrier mobilities, and photovoltaic properties of the resultant thin films. In this work, the zigzag naphtho[1,2‐b:5,6‐b′]dithiophene‐based copolymer displays a good hole mobility and a high open‐circuit voltage; however, polymer solar cells in which the linear naphtho[2,3‐b;6,7‐d′]dithiophene‐based copolymer is used as the electron donor material perform better than the cells prepared using the zigzag naphtho[1,2‐b:5,6‐b′]dithiophene‐based copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 305–312  相似文献   

3.
New monomers containing 4‐cyanophenyl (–PhCN) groups attached to a thieno[3,2‐b]thiophene (TT) or dithieno[3,2‐b:2′,3′‐d]thiophene (DTT) structure were synthesized and characterized as 4‐(2,5‐dibromothieno[3,2‐b]thiophen‐3‐yl)benzonitrile (Br–TT–PhCN) or 4,4′‐(2,6‐dibromodithieno[3,2‐b:2′,3′‐d]thiophene‐3,5‐diyl)dibenzonitrile (Br–DTT–PhCN). The Suzuki coupling of 9,9‐dioctylfluorene‐2,7‐diboronic acid bis(1,3‐propanediol)ester and the Br–TT–PhCN or Br–DTT–PhCN monomer was utilized for the syntheses of novel copolymers poly{9,9‐dioctylfluorene‐2,7‐diyl‐alt‐3‐(4′‐cyanophenyl)thieno[3,2‐b]thiophene‐2,5‐diyl} (PFTT–PhCN) and poly{9,9‐dioctylfluorene‐2,7‐diyl‐alt‐3,5‐bis(4′‐cyanophenyl)dithieno[3,2‐b:2′,3′‐d]thiophene‐2,6‐diyl} (PFDTT–PhCN), respectively. The photophysical, electrochemical, and electroluminescent (EL) properties of these novel copolymers were studied. Their photoluminescence (PL) exhibited the same emission maximum for both copolymers in solution. Red‐shifted PL emissions were observed in the thin films. The PL emission maximum of PFTT–PhCN was more significantly redshifted than that of PFDTT–PhCN, indicating more pronounced excimer or aggregate formation in PFTT–PhCN. The ionization potential (HOMO level) and electron affinity (LUMO level) values were 5.54 and 2.81 eV, respectively, for PFTT–PhCN and were 5.57 and 2.92 eV, respectively, for PFDTT–PhCN. Polymer light‐emitting diodes (LEDs) with copolymer active layers were fabricated and studied. Anomalous behavior and memory effects were observed from the current–voltage characteristics of the LEDs for both copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2629–2638  相似文献   

4.
Two novel alternating copolymers, poly{9,9‐dihexylfluorene‐2,7‐diyl‐alt‐2,5‐dioctyl‐3,6‐bis(4‐phenyl)pyrrolo[3,4‐c] pyrrole‐1,4‐dione} ( P1 ) and poly{9,9‐dihexylfluorene‐2,7‐diyl‐alt‐2,5‐dioctyl‐3,6‐bis(3‐phenyl)pyrrolo[3,4‐c] pyrrole‐1,4‐dione} ( P2 ), derived from 9,9‐dihexylfluorene and diketopyrrolopyrrole (DPP), have been successfully synthesized through palladium‐catalyzed Suzuki polycondensation in good yields. P1 and P2 possess moderate molecular weights and polydispersities, well‐defined structures, and excellent thermal properties with an onset decomposition temperature around 400 °C. Both P1 and P2 in thin films exhibit red photoluminescence from DPP species exclusively, with peaks at 609 and 616 nm, respectively. Cyclic voltammetry studies show that P1 and P2 have low‐lying lowest unoccupied molecular orbital energy levels at ?3.65 eV and reversible reduction processes, so these polymers may constitute another kind of red‐emitting polymer with high electron affinity. Preliminary electroluminescent results of devices with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Ba/Al configuration reveal that P1 may be a promising candidate for red emitters with a maximum brightness of 153 cd/m2 and a maximum external quantum efficiency of 0.13%, whereas the performance of P2 is relatively poor. These differences might originate from different conjugation lengths in their main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2395–2405, 2006  相似文献   

5.
We have synthesized four types of cyclopentadithiophene (CDT)‐based low‐bandgap copolymers, poly[{4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl}‐alt‐(2,2′‐bithiazole‐5,5′‐diyl)] ( PehCDT‐BT ), poly[(4,4‐dioctyl‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐(2,2′‐bithiazole‐5,5′‐diyl)] ( PocCDT‐BT ), poly[{4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl}‐alt‐{2,5‐di(thiophen‐2‐yl)thiazolo[5,4‐d]thiazole‐5,5′‐diyl}] ( PehCDT‐TZ ), and poly[(4,4‐dioctyl‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐{2,5‐di(thiophen‐2‐yl)thiazolo[5,4‐d]thiazole‐5,5′‐diyl}] ( PocCDT‐TZ ), for use in photovoltaic applications. The intramolecular charge‐transfer interaction between the electron‐sufficient CDT unit and electron‐deficient bithiazole (BT) or thiazolothiazole (TZ) units in the polymeric backbone induced a low bandgap and broad absorption that covered 300 nm to 700–800 nm. The optical bandgap was measured to be around 1.9 eV for PehCDT‐BT and PocCDT‐BT , and around 1.8 eV for PehCDT‐TZ and PocCDT‐TZ . Gel permeation chromatography showed that number‐average molecular weights ranged from 8000 to 14 000 g mol?1. Field‐effect mobility measurements showed hole mobility of 10?6–10?4 cm2 V?1 s?1 for the copolymers. The film morphology of the bulk heterojunction mixtures with [6,6]phenyl‐C61‐butyric acid methyl ester (PCBM) was also examined by atomic force microscopy before and after heat treatment. When the polymers were blended with PCBM, PehCDT‐TZ exhibited the best performance with an open circuit voltage of 0.69 V, short‐circuit current of 7.14 mA cm?2, and power conversion efficiency of 2.23 % under air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW cm?2).  相似文献   

6.
A novel series of thiazolothiazole (Tz)‐based copolymers, poly[9,9‐didecylfluorene‐2,7‐diyl‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P1), poly[9,9‐dioctyldibenzosilole‐2,7‐diyl‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P2), and poly[4,4′‐bis(2‐ethylhexyl)‐dithieno[3,2‐b:2′,3′‐d]silole‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P3), were synthesized for the use as donor materials in polymer solar cells (PSCs). The field‐effect carrier mobilities and the optical, electrochemical, and photovoltaic properties of the copolymers were investigated. The results suggest that the donor units in the copolymers significantly influenced the band gap, electronic energy levels, carrier mobilities, and photovoltaic properties of the copolymers. The band gaps of the copolymers were in the range of 1.80–2.14 eV. Under optimized conditions, the Tz‐based polymers showed power conversion efficiencies (PCEs) for the PSCs in the range of 2.23–2.75% under AM 1.5 illumination (100 mW/cm2). Among the three copolymers, P1, which contained a fluorene donor unit, showed a PCE of 2.75% with a short‐circuit current of 8.12 mA/cm2, open circuit voltage of 0.86 V, and a fill factor (FF) of 0.39, under AM 1.5 illumination (100 mW/cm2). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Branched‐alkyl‐substituted poly(thieno[3,4‐c]pyrrole‐4,6‐dione‐alt‐3,4‐difluorothiophene) (PTPD[2F]T) can be used as a polymer acceptor in bulk heterojunction (BHJ) solar cells with a low‐band‐gap polymer donor (PCE10) commonly used with fullerenes. The “all‐polymer” BHJ devices made with PTPD[2F]T achieve efficiencies of up to 4.4 %. While, to date, most efficient polymer acceptors are based on perylenediimide or naphthalenediimide motifs, our study of PTPD[2F]T polymers shows that linear, all‐thiophene systems with adequately substituted main chains can also be conducive to efficient BHJ solar cells with polymer donors.  相似文献   

8.
This article reports the synthesis, one‐ and two‐photon absorption, and excited fluorescence properties of poly(1,4‐diketo‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole‐alt‐N‐octyl‐3,6‐carbazole/2,7‐fluorene) ( PDCZ / PDFL ). PDCZ and PDFL are synthesized by the Suzuki cross‐coupling of 2,5‐dioctyl‐1,4‐diketo‐3,6‐bis(p‐bromophenylpyrrolo[3,4‐c]pyrrole and N‐octyl‐3,6‐bis(3,3‐dimethyl‐1,3,2‐dioxaborolan‐2‐yl)carbazole or 2,7‐bis(3,3‐dimethyl‐1,3,2‐dioxaborolan‐2‐yl)fluorene and have number‐average molecular weights of 8.5 × 103 and 1.14 × 104 g/mol and polydispersities of 2.06 and 1.83, respectively. They are highly soluble in common organic solvents and emit strong orange one‐ and two‐photon excited fluorescence (2PEF) in THF solution and exhibit high light and heat stability. The maximal two‐photon absorption cross‐sections (δ) measured in THF solution by the 2PEF method using femtosecond laser pulses are 970 and 900 GM per repeating unit for PDCZ and PDFL , respectively. These 1,4‐diketo‐pyrrolo[3,4‐c]pyrrole‐containing polymers with full aromatic structure and large δ will be promising high‐performance 2PA dyes applicable in two‐photon science and technology. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 944–951  相似文献   

9.
An efficient cascade process five‐component reaction of isatins and 3‐oxo‐N‐arylbutanamide for the synthesis of 4,4′‐((2‐oxoindoline‐3,3‐diyl)bis(methylene))bis(2‐aryl‐1H‐pyrrolo[3,4‐c]quinoline‐1,3(2H)‐dione) derivatives was reported under mild condition. The advantages of this strategy are easy to obtain raw materials, convenient one‐pot procedure, and simple operation.  相似文献   

10.
Three alternating donor–acceptor copolymers have been synthesized by Stille coupling polymerization of 2,6‐(trimethyltin)?4,8‐bis(5‐dodecylthiophene‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene with 1,3‐dibromo‐5‐hexylthieno[3,4‐c]pyrrole‐4,6‐dione, 4,7‐dibromo‐1,3‐benzothiadiazole, and 5,7‐dibromo‐2,3‐didodecylthieno[3,4‐b]pyrazine, respectively. The synthesized polymers were tested in bulk heterojunction solar cells as blends with the acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). The thienopyrroledione copolymer displayed a power conversion efficiency of 3.00% which was increased to 3.86% by application of the additive 1,8‐diiodooctane (DIO). Tapping mode atomic force microscopy analysis indicated that there was an increase in the phase separation between polymer and PCBM, leading to an improvement in the performance upon the addition of DIO. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2622–2630  相似文献   

11.
In contrast to the traditional multistep synthesis, herein an efficient and fewer‐steps new synthetic strategy is demonstrated for the facile preparation of organic‐electronically important D–π–A–π–D‐type oligoaryls through sequential direct C?H arylations. This methodology has shown that the synthesis of thieno[3,4‐c]pyrrole‐4,6‐dione (TPD)‐ or furano[3,4‐c]pyrrole‐4,6‐dione (FPD)‐centred target molecules could be accessed step‐economically either from the core structure (acceptor) or from the end structure (donor), which supplied a more flexible and succinct new synthetic alternative to the preparation of the π‐functional small‐molecule semiconducting materials. In addition, optical and electrochemical properties of the synthesized oligoaryls were examined.  相似文献   

12.
A new liquid crystalline (LC) acceptor monomer 2,5‐bis[4‐(4′‐cyanobiphenyloxy)dodecyl]‐3,6‐dithiophen‐2‐yl‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione (TDPPcbp) was synthesized by incorporating cyanobiphenyl mesogens into diketopyrrolopyrrole (DPP). The monomer was copolymerized with bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′] dithiophene (BDT) and N‐9′‐heptadecanylcarbazole (CB) donors to obtain donor–acceptor alternating copolymers poly[4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐3,6‐bis(thiophen‐5‐yl)‐2,5‐bis[4‐(4′‐cyanobiphenyloxy)dodecyl]‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione] (PBDTDPPcbp) and poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐3,6‐bis(thiophen‐5‐yl)‐2,5‐bis[4‐(4′‐cyano‐biphenyloxy)dodecyl]‐2,5‐dihydropyrrolo[3, 4‐c]pyrrole‐1,4‐dione] (PCBTDPPcpb) with reduced band gap, respectively. The LC properties of the copolymers, the effects of main chain variation on molecular packing, optical properties, and energy levels were analyzed. Incorporating the mesogen cyanobiphenyl units not only help polymer donors to pack well through mesogen self‐organization but also push the fullerene acceptor to form optimized phase separation. The bulk heterojunction photovoltaicdevicesshow enhanced performance of 1.3% for PBDTDPPcbp and 1.2% for PCBTDPPcbp after thermal annealing. The results indicate that mesogen‐controlled self‐organization is an efficient approach to develop well‐defined morphology and to improve the device performance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Four new conjugated copolymers based on the moiety of bis(4‐hexylthiophen‐2‐yl)‐6,7‐diheptyl‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline (BTHTQ) were synthesized and characterized, including poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) (PBTHTQ), poly‐(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo‐[3,4‐g]quinoxaline‐alt‐2,5‐thiophene) (PTTHTQ), poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl) [1,2,5]‐thiadiazolo‐[3,4‐g]quinoxaline‐alt‐9,9‐dioctyl‐2,7‐fluore‐ne) (PFBTHTQ), and poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline‐alt‐1,4‐bis(decyloxy)phenylene) (PPBTHTQ). The λmax of PBTHTQ, PTTHTQ, PFBTHTQ, and PPBTHTP thin films was shown at 780, 876, 734, and 710 nm, respectively, with the corresponding optical band gaps (E) of 1.31, 1.05, 1.40, and 1.43 eV. The relatively small band gaps of the synthesized polymers suggested the significance of intramolecular charge transfer between the donor and TQ moiety. The estimated hole mobilities of PBTHTQ, PTTHTQ, and PFBTHTQ‐based field effect transistor devices using CHCl3 solvent were 8.5 × 10?5, 8.5 × 10?4, and 2.8 × 10?5 cm2 V?1 s?1, respectively, but significantly enhanced to 1.6 × 10?4, 3.8 × 10?3, and 1.5 × 10?4 cm2 V?1 s?1 using high boiling point solvent of chlorobenzene (CB). The higher hole mobility of PTTHTQ than the other two copolymers was attributed from its smaller band gap or ordered morphology [wormlike (chloroform) or needle‐like (CB)]. The characteristics of small band gap and high mobility suggest the potential applications of the BTHTQ‐based conjugated copolymers in electronic and optoelectronic devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6305–6316, 2008  相似文献   

14.
New donor–π–acceptor (D–π–A) type conjugated copolymers, poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(4‐octylthiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐tTz), and poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(6‐octylthieno[3,2‐b]thiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐ttTz) were synthesized and characterized with the aim of investigating their potential applicability to organic photovoltaic active materials. While copolymer PBDT‐tTz showed a zigzagged non‐linear structure by thiophene π‐bridges, PBDT‐ttTz had a linear molecular structure with thieno[3,2‐b]thiophene π‐bridges. The optical, electrochemical, morphological, and photovoltaic properties of PBDT‐tTz and PBDT‐ttTz were systematically investigated. Furthermore, bulk heterojunction photovoltaic devices were fabricated by using the synthesized polymers as p‐type donors and [6,6]‐phenyl‐C71‐butyric acid methyl ester as an n‐type acceptor. PBDT‐ttTz showed a high power conversion efficiency (PCE) of 5.21% as a result of the extended conjugation arising from the thienothiophene π‐bridges and enhanced molecular ordering in the film state, while PBDT‐tTz showed a relatively lower PCE of 2.92% under AM 1.5 G illumination (100 mW/cm2). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1978–1988  相似文献   

15.
A simple synthetic route was used for the synthesis of a novel series of alternating copolymers based on substituted 2,7‐distyrylfluorene bridged through alkylene chains. First, 2,7‐dibromofluorene was reacted with 2 equiv of butyllithium, and this was followed by a treatment with 1 equiv of α,ω‐dibromoalkane to yield the intermediate, poly(2,7‐dibromofluorene‐9,9‐diyl‐alt‐alkane‐α,ω‐diyl). ( 1 ) Heck coupling of the latter with 1‐tert‐butyl‐4‐vinylbenzene afforded the target, poly[2,7‐bis(4‐tert‐butylstyryl)fluorene‐9,9‐diyl‐alt‐alkane‐α,ω‐diyl] ( 2 ). The two versions of 2 ( 2a and 2b which have hexane and decane, respectively, as alkane groups) were readily soluble in common organic solvents. Their glass‐transition temperature was relatively low (52 and 87 °C). An intense blue photoluminescence emission with maxima at about 408 and 409 nm was observed in tetrahydrofuran solutions, whereas thin films exhibited an orange emission with maxima at 569 and 588 nm. Very large redshifts of the photoluminescence maxima and Stokes shifts in thin films indicated strong aggregation in the solid state. Both polymers oxidized and reduced irreversibly. Single‐layer light‐emitting diodes with hole‐injecting indium tin oxide and electron‐injecting aluminum electrodes were fabricated. They emitted orange light with external electroluminescence efficiencies of 0.52 and 0.36% photon/electron, as determined in light‐emitting diodes made of 2a and 2b , with alkylenes of (CH2)6 and (CH2)10, respectively. An increase in the external electroluminescence efficiency up to 1.5% was reached in light‐emitting diodes made of polymer blends consisting of 2a and poly(9,9‐dihexadecylfluorene‐2,7‐diyl), which emitted blue‐white light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 809–821, 2007.  相似文献   

16.
Four new polymers containing a benzo[c]thiophene‐N‐dodecyl‐4,5‐dicarboxylic imide (DIITN) unit including the homopolymer and three donor–acceptor copolymers were designed, synthesized, and characterized. For these copolymers, DIITN unit with low bandgap was selected as an electron acceptor, whereas 5,5′‐(2,7‐bisthiophen‐2‐yl)‐9‐(2‐decyltetradecyl)‐9H‐carbazole), 5,5′‐(3,3′‐di‐n‐octylsilylene‐2,2′‐bithiophene), and 5,5′‐(2,7‐bisthiophen‐2‐yl‐9,9‐bisoctyl‐9H‐fluoren‐7‐yl) were chosen as the electron donor units to tune the highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) levels of the copolymers for better light harvesting. These polymers exhibit extended absorption in the visible and near‐infrared range and are soluble in common organic solvents. The relative low lying HOMO of these polymers promises good air stability and high open‐circuit voltage (Voc) for photovoltaic application. Bulk heterojunction solar cells were fabricated by blending the copolymers with [6,6]‐phenyl‐C61‐butyric acid methyl ester or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). The best power conversion efficiency of 1.6% was achieved under simulated sunlight AM 1.5G (100 mW/cm2) from solar cells containing 20 wt % of the fluorene copolymer poly[5,5′‐(2,7‐bisthiophen‐2‐yl‐9,9‐bisoctyl‐9H‐fluoren‐7‐yl)‐alt‐2,9‐(benzo[c]thiophene‐N‐dodecyl‐4,5‐dicarboxylic imide)] and 80 wt % of PC71BM with a high open‐circuit voltage (Voc) of 0.84 V. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
A series of π‐conjugated polymers and copolymers containing 1,4‐dioxo‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole (also known as 2,5‐dihydro‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole‐1,4‐dione) (DPP) and 1,4‐phenylene units in the main chain is described. The polymers are synthesised using the palladium‐catalysed aryl‐aryl coupling reaction (Suzuki coupling) of 2,5‐dihexylbenzene‐1,4‐diboronic acid with 1,4‐dioxo‐2,5‐dihexyl‐3,6‐di(4‐bromophenyl)pyrrolo[3,4‐c]pyrrole and 1,4‐dibromo‐2,5‐dihexylbenzene in different molar ratios. Soluble hairy rod‐type polymers with molecular weights up to 21 000 are obtained. Polymer solutions in common organic solvents such as chloroform or xylene are of orange colour (λmax = 488 nm) and show strong photoluminescence (λmax = 544 nm). The photochemical stability is found to be higher than for corresponding saturated polymers containing isolated DPP units in the main chain. Good solubility and processability into thin films render the compounds suitable for electronic applications.  相似文献   

18.
Three classes of quinoxaline (Qx)‐based donor–acceptor (D–A)‐type copolymers, poly[thiophene‐2,5‐diyl‐alt‐2,3‐bis(4‐(octyloxy)phenyl‐quinoxaline‐5,8‐diyl] P(T‐Qx), poly{4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐2,3‐bis(4‐(octyloxy)phenyl‐quinoxaline‐5,8‐diy} P(BDT‐Qx), and poly{4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(5′,8′‐di‐2‐thienyl‐2,3‐bis(4‐octyloxyl)phenyl)‐quinoxaline‐5,5‐diyl} P(BDT‐DTQx), were synthesized via a Stille coupling reaction. The Qx unit was functionalized at the 2‐ and 3‐positions with 4‐(octyloxy)phenyl to provide good solubility and to reduce the steric hindrance. The absorption spectra of the Qx‐containing copolymers could be tuned by incorporating three different electron‐donating moieties. Among these, P(T‐Qx) acted as an electron donor and yielded a high‐performance solar cell by assuming a rigid planar structure, confirmed by differential scanning calorimetry, UV–vis spectrophotometer, and density functional theory study. In contrast, the P(BDT‐Qx)‐based solar cell displayed a lower power conversion efficiency (PCE) with a large torsional angle (34.7°) between the BDT and Qx units. The BDT unit in the P(BDT‐DTQx) backbone acted as a linker and interfered with the formation of charge complexes or quinoidal electronic conformations in a polymer chain. The PCEs of the polymer solar cells based on these copolymers, in combination with [6,6]‐phenyl C70 butyric acid methyl ester (PC71BM), were 3.3% [P(T‐Qx)], 1.9% [P(BDT‐Qx)], and 2.3% [P(BDT‐DTQx)], respectively, under AM 1.5G illumination (100 mW cm?2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
The effect of the presence of hexyl group in thiophene on the photophysical and electrochemical properties of poly[(9,9‐dioctyluorene)?2,7‐diyl‐alt‐(4,7‐bis(3‐hexylthien‐5‐yl)?2,1,3‐benzothiadiazole)?2′,2″‐diyl] (F8TBT) is investigated. The copolymers present electron donor–acceptor architecture and are synthesized by Suzuki coupling reaction. The UV/Vis spectra show absorption maximum in the wavelength range of blue and orange, which are associated with different segments of the polymer backbone. Addition of hexyl substituent groups has a positive effect on the molar absorptivity and increases the emission and absorption intensities due to fluorene and thiophene‐benzothiadiazole‐thiophene (TBT) units, although an increment in the bandgap is observed. Cyclic voltammetry study of the polymer films reveal irreversible reduction and oxidation processes of the TBT units in the polymer chain and the HOMO and LUMO energy levels suggest ambipolar character for the polymers, while the electrochemical bandgaps are consistent with the absorbance measurements. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1975–1982  相似文献   

20.
A series of new 3‐(4‐oxo‐4H‐chromen‐3‐yl)‐3a,6a‐dihydropyrrolo[3,4‐d]isoxazole‐4,6‐dione have been synthesized by the reaction of N‐arylmaleimides with nitrile oxide, prepared from α‐chloro‐4‐oxo‐4H‐chromen‐carbaldehyde oximes in situ through 1,3‐dipolar cycloaddition reaction. The structures of all new compounds were confirmed by elemental analysis, ir,1H nmr and mass spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号