首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New low‐temperature curable organic/inorganic hybrid polymers were designed and synthesized as gate dielectrics for organic thin‐film transistors (OTFTs). Allyl alcohols were introduced to polyhedral oligomeric silsesquioxane (POSS) via hydrosilyation to produce an alcohol‐functionalized POSS derivative (POSS‐OH). POSS‐OH was then reacted with hexamethoxymethylmelamine at carrying molar ratios at 80 °C in the presence of a catalytic amount of p‐toluenesulfonic acid to give highly cross‐linked network polymers (POSS‐MM). The prepared thin films were smooth and hard after the thermal cross‐linking reaction and had very low leakage currents (<10?8 A/cm2) with no significant absorption over the visible spectral range. Pentacene‐based OTFTs using the synthesized insulators as gate dielectric layers had higher hole mobilities (up to 0.36 cm2/Vs) than a device using thermally cross‐linked poly(vinyl phenol) and melamine as the gate dielectric layer (0.18 cm2/Vs). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3260–3268  相似文献   

2.
Two new aromatic poly(amide‐hydrazide)s (PAHs)‐bearing electroactive pyrenylamine units in the backbone were prepared from the phosphorylation polycondensation reactions of N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene ( 1 ) with p‐aminobenzoyl hydrazide (p‐ABH) and m‐aminobenzoyl hydrazide (m‐ABH), respectively. The PAHs could be further cyclodehydrated into the corresponding poly(amide‐1,3,4‐oxadiazole)s in the range of 300–400 °C in the solid film state. All the hydrazide and oxadiazole polymers were soluble in many polar organic solvents and could afford flexible and strong films via solution casting. The poly(amide‐1,3,4‐oxdiazole)s had high glass‐transition temperatures (294–309 °C) and high thermal stability (10% weight‐loss temperature in excess of 520 °C). The dilute solutions of all the hydrazide and oxadiazole polymers showed strong fluorescence with emission maxima around 457–459 nm in the blue region. Copolymers obtained from the polycondensation of equimolar mixture of diacid 1 and 4,4′‐oxydibenzoic acid with p‐ABH or m‐ABH exhibited a significantly increased fluorescence quantum efficiency in comparison with the homopolymers. Cyclic voltammetry results indicated that all the hydrazide and oxadiazole polymers exhibited an ambipolar (n‐ and p‐doping processes) and electrochromic behavior. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

3.
This article concerns the hydrosilylation polyaddition of 1,4‐bis(dimethylsilyl)benzene ( 1 ) with 4,4′‐diethynylbiphenyl, 2,7‐diethynylfluorene ( 2b ), and 2,6‐diethynylnaphthalene with RhI(PPh3)3 catalyst. Trans‐rich polymers with weight‐average molecular weights (Mw's) ranging from 19,000 to 25,000 were obtained by polyaddition in o‐Cl2C6H4 at 150–180 °C, whereas cis‐rich polymers with Mw's from 4300 to 34,000 were obtained in toluene at 0 °C–r.t. These polymers emitted blue light in 4–81% quantum yields. The cis polymers isomerized into trans polymers upon UV irradiation, whereas the trans polymers did not. The device having a layer of polymer trans‐ 3b obtained from 1 and 2b demonstrated electroluminescence without any dopant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2774–2783, 2004  相似文献   

4.
A series of novel polyimides based on N,N‐di(4‐aminophenyl)‐1‐aminopyrene and aromatic or alicyclic tetracarboxylic dianhydrides were synthesized. The polymers exhibited good solubility in many polar organic solvents and could afford robust films via solution casting. The polyimides derived from aromatic dianhydrides exhibited high thermal stability and high glass‐transition temperatures (333–364 °C). Cyclic voltammetry studies of the polymer films showed that these polyimides are both p and n dopable and have multicolored electrochromic states. For the polyimides derived from alicyclic dianhydrides, they revealed a strong blue‐light emission with high fluorescence quantum yields (?PL > 45%) and a marked solvatochromic behavior. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
A series of novel triphenylamine‐based polymers were synthesized from benzaldehyde and triphenylamine derivatives. All the polymers having high molecular weight are readily soluble in many organic solvents and could be solution‐cast into amorphous films. They had glass transition temperatures (Tgs) in the range of 193–217 °C, and 10% weight loss temperatures in excess of 475 °C. Cyclic voltammograms of all polymers showed reversible oxidation redox peaks and Eonset around 0.42–0.90 V, indicating that the polymers are electrochemically active and stable. In addition, all these polymers revealed photochemical characteristics in conformity with their electrochromic characteristics. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2118–2131, 2009  相似文献   

6.
Two series of polyimides I – II with methyl‐substituted triphenylamine units were prepared from the diamines, 4,4′‐diamino‐2″,4″,6″‐trimethyltriphenylamine (Me3TPA‐diamine; 1 ) and 4,4′‐diamino‐4″‐methyltriphenylamine (MeTPA‐diamine; 2 ), and two commercially available tetracarboxylic dianhydrides via a conventional two‐step chemical imidization. All the polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with high glass transition temperatures (266–340 °C) and high char yields (higher than 49% at 800 °C in nitrogen). The polymer films showed reversible electrochemistry/electrochromism accompanied by a color change from neutral pale yellow to green oxidized form with good coloration efficiency, switching time, and stability. The CO2 permeability coefficients (PCO2) and permeability selectivity (PCO2/PCH4) for these polyimide membranes were in the range of 34.1–229.2 barrer and 21.3–28.9, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
This study was directed toward the cationic polymerization of tetrahydroindene (i.e., bicyclo[4.3.0]‐2,9‐nonadiene), a bicyclic conjugated diene monomer, with a series of Lewis acids, especially focusing on the synthesis of high‐molecular‐weight polymers and subsequent hydrogenation for novel cycloolefin polymers with high service temperatures. EtAlCl2 or SnCl4 induced an efficient and quantitative cationic polymerization of tetrahydroindene to afford polymers with relatively high molecular weights (number‐average molecular weight > 20,000) and 1,4‐enchainment bicyclic main‐chain structures. The subsequent hydrogenation of the obtained poly(tetrahydroindene) with p‐toluenesulfonyl hydrazide resulted in a saturated alicyclic hydrocarbon polymer with a relatively high glass transition (glass‐transition temperature = 220 °C) and improved pyrolysis temperature (10% weight loss at 480 °C). The new diene monomer was randomly copolymerized with cyclopentadiene at various feed ratios in the presence of EtAlCl2 to give novel cycloolefin copolymers, which were subsequently hydrogenated into alicyclic copolymers with variable glass‐transition temperatures (70–220 °C). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6214–6225, 2006  相似文献   

8.
The present study investigates the degradation behavior of various high‐molecular‐weight acrylic polymers (50,000 < Mn/g mol?1 < 100,000), namely poly(methyl methacrylate) (PMMA), poly(n‐butyl methacrylate) (PBMA), poly(n‐butyl acrylate) (PBA), and poly(lauryl methacrylate) (PLMA), under extreme environmental conditions. These polymers were synthesized via various polymerization techniques to create different end‐groups. The polymers chosen are readily applicable in the formulation of surface coatings and were degraded under conditions which replicate the harsh Australian climate, where surface coatings may reach temperatures of up to 95 °C and are exposed to broad‐spectrum UV radiation of up to 1 kW m?2. The degradation behavior of the polymeric materials on their surface was followed via ATR‐IR spectroscopy, high resolution FTIR microscopy, and X‐ray photoelectron spectroscopy. The extent of the observed thermal and photo‐oxidation is directly related to the length of the ester side group, with the degradation susceptibility decreasing in the order of PLMA > PBMA/PBA > PMMA, with PMMA still stable even after 5 months exposure to the harshest condition used (UV light at 95 °C). The general degradation mechanism involves the loss of the ester side groups to form methacrylic acid followed by cross‐linking. The effect of the variable end groups was found to be minimal. The results from this study are in good agreement with previous studies of low‐molecular‐weight model polymers under identical conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Two novel series of ambipolar and near‐infrared electrochromic aromatic polyamides with electroactive anthraquinone group were synthesized from new aromatic diamines, 2‐(bis(4‐aminophenyl)amino)anthracene‐9,10‐dione and 2‐(4‐(bis(4‐aminophenyl)amino)phenoxy)anthracene‐9,10‐dione, respectively, via low‐temperature solution polycondensation reaction. These polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures (Tg) (285–360 °C). Electrochemical studies of these electrochromic polyamides revealed ambipolar behavior with reversible redox couples and high contrast ratio both in the visible range and near‐infrared region. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Cross‐linked poly(ε‐caprolactone) (PCL)‐based polyesterurethane (PUR) systems have been synthesized through Diels–Alder reactions by reactive extrusion. The Diels–Alder and retro‐Diels–Alder reactions proved to be useful for enhancing the molecular motion of PCL‐based systems, and therefore their crystallization ability, in the design of cross‐linked semicrystalline polymers with one‐way and two‐way shape‐memory properties. Successive reactions between α,ω‐diol PCL (PCL2), furfuryl alcohol, and methylene diphenyl 4,4′‐diisocyanate straightforwardly afforded the α,ω‐furfuryl PCL‐based PUR systems, and subsequent Diels–Alder reactions with N,N‐phenylenedimaleimide afforded the thermoreversible cycloadducts. The cross‐linking density could be modulated by partially replacing PCL‐diol with PCL‐tetraol. Interestingly, the resulting PUR systems proved to be semicrystalline cross‐linked polymers, the melting temperature of which (close to 45 °C) represented the switching temperature for their shape‐memory properties. Qualitative and quantitative measurements demonstrated that these PUR systems exhibited one‐way and two‐way shape‐memory properties depending on their cross‐linking density.  相似文献   

11.
A series of rigid‐rod polyamides and polyimides containing p‐terphenyl or p‐quinquephenyl moieties in backbone as well as naphthyl pendent groups were synthesized from two new aromatic diamines. The polymers were characterized by inherent viscosity, elemental analysis, FT‐IR, 1H‐NMR, 13C‐NMR, X‐ray, differential scanning calorimetry (DSC), thermomechanical analysis (TMA), thermal gravimetric analysis (TGA), isothermal gravimetric analysis, and moisture absorption. All polymers were amorphous and displayed Tg values at 304–337°C. Polyamides dissolved upon heating in polar aprotic solvents containing LiCl as well as CCl3COOH, whereas polyimides were partially soluble in these solvents. No weight loss was observed up to 377–422°C in N2 and 355–397°C in air. The anaerobic char yields were 57–69% at 800°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 15–24, 1999  相似文献   

12.
New aromatic diyne monomers of 1,4‐diethynyl‐2,5‐(dihexyloxy)benzene ( 1 ), 1,6‐diethynyl‐2‐(hexyloxy)naphthalene ( 2 ), and 9,9‐bis(4‐ethynylphenyl)fluorene ( 3 ) are synthesized. Their homopolymerizations and copolymerizations with 1‐octyne ( 4 ) or phenylacetylene ( 5 ) are effected by TaBr5–Ph4Sn and CpCo(CO)2, giving soluble hyperbranched polyarylenes with high molecular weights (Mw up to ~ 2.9 × 105) in high yields (up to 99%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, UV, PL, and TGA analysis. The polymers show excellent thermal stability (Td > 400 °C) and carbonize when pyrolyzed at 900 °C. Upon photoexcitation, the polymers emit deep blue light in the vicinity of ~400 nm with fluorescence quantum yields up to 92%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4249–4263, 2007  相似文献   

13.
The purpose of this study was to investigate the influence of cross‐linking on the thermomechanical behavior of liquid‐crystalline elastomers (LCEs). Main‐chain LCE networks were synthesized via a thiol‐acrylate Michael addition reaction. The robust nature of this reaction allowed for tailoring of the behavior of the LCEs by varying the concentration and functionality of the cross‐linker. The isotropic rubbery modulus, glass transition temperature, and strain‐to‐failure showed strong dependence on cross‐linker concentration and ranged from 0.9 MPa, 3 °C, and 105% to 3.2 MPa, 25 °C, and 853%, respectively. The isotropic transition temperature (Ti) was shown to be influenced by the functionality of the cross‐linker, ranging from 70 °C to 80 °C for tri‐ and tetra‐functional cross‐linkers. The magnitude of actuation can be tailored by controlling the amount of cross‐linker and applied stress. Actuation increased with increased applied stress and decreased with greater amounts of cross‐linking. The maximum strain actuation achieved was 296% under 100 kPa of bias stress, which resulted in work capacity of 296 kJ/m3 for the lowest cross‐linked networks. Overall, the experimental results provide a fundamental insight linking thermomechanical properties and actuation to a homogenous polydomain nematic LCE networks with order parameters of 0.80 when stretched. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 157–168  相似文献   

14.
Furan‐containing benzoxazine monomers, 3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐FBz) and bis(3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazinyl)isopropane (BPA‐FBz), were prepared using furfurylamine as a raw material. The chemical structures of P‐FBz and BPA‐FBz were characterized with FTIR, 1H NMR, elemental analysis, and mass spectrometry. Formation of furfurylamine Mannich bridge networks in the polymerizations of P‐FBz and BPA‐FBz increased the cross‐linking densities and thermal stability of the resulting polybenzoxazines. P‐FBz‐ and BPA‐FBz‐based polymers also exhibited high glass transition temperatures above 300 °C, high char yields, and low flammability with limited oxygen index values of 31. The dielectric (Dk = 3.21–3.39) and mechanical properties (high storage modulus of 3.0–3.9 GPa and low coefficient of thermal expansion of 37.7–45.4 ppm) of the P‐FBz‐ and BPA‐FBz‐based polymers were superior or comparable to other polybenzoxazines. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5267–5282, 2005  相似文献   

15.
A novel benzoxazine‐containing benzimidazole moiety (P‐PABZ) was synthesized from 2‐(4‐aminophenyl)‐1H‐benzimidazole‐5‐amine and characterized. With the aid of differential scanning calorimetry and in situ Fourier transform infrared, we found the thermal polymerization of P‐PABZ in bulk started around 140 °C and its favored polymerization pathway. Compared to the benzoxazine derived from 4,4′‐diamine diphenyl methane (P‐MDA), P‐PABZ exhibited lower processing temperature, and the corresponding polymers had higher glass transition temperature and enhanced thermal stability. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The relative permittivity, loss, and breakdown strength are reported for a commercial sample of bisphenol A‐polycarbonate (comm‐BPA‐PC) and a purified sample of the same polymer (rp‐BPA‐PC) as well as for two new polycarbonates having low molecular cross‐sectional areas, namely a copolymer of tetraaryl polycarbonate and BPA‐PC (TABPA‐BPA‐PC) and a triaryl polycarbonate homopolymer (TriBPA‐PC). The glass transition temperatures of the new polymers are higher than the Tg of BPA‐PC (187 and 191 °C vs. 148 °C). Relative permittivity and loss measurements were carried out from 10 to 105 Hz over a wide temperature range, and results for the α‐ and γ‐relaxation regions are discussed in detail. For the α‐relaxation, the isochronal peak position, Tα, scales approximately with Tg. On the other hand, the peak temperature for the γ‐relaxation is approximately constant, independent of Tg. Also, in contrast to what is observed for α, γ exhibits a strong increase in peak height as temperature/frequency increases and a significant difference is found between Arrhenius plots determined from isochronal and isothermal data analyses. Next, the γ‐relaxation region for comm‐BPA‐PC and associated activation parameters show strong history/purity effects. The activation parameters also depend on the method of data analysis. The results shed light on discrepancies that exist in the literature for BPA‐PC. The shapes of the γ loss peaks and hence glassy‐state motions for all the polymers are very similar. However, the intensities of the TriBPA‐PC and TABPA‐BPA‐PC γ peaks are reduced by an amount that closely matches the reduced volume fraction of carbonate units in the two new polymers. Finally, for comm‐BPA‐PC, the breakdown strength is strongly affected by sample history and this is assumed to be related to volatile components in the material. It is found that the breakdown strengths for TriBPA‐PC and TABPA‐BPA‐PC are relatively close to that for rp‐BPA‐PC with the value for TriBPA‐PC being slightly larger than that for rp‐BPA‐PC or the value usually reported for typical capacitor grade polycarbonate. Finally, it is shown that the real part of the relative permittivity remains relatively constant from low temperatures to Tg. Consequently, based on the dielectric properties, TriBPA‐PC and TABPA‐BPA‐PC should be usable in capacitors to at least 50 °C higher than BPA‐PC. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

17.
We reported a new way to synthesize single‐chain white light‐emitting polyfluorene (WPF) with an increased molecular weight using azide‐alkyne click reaction. Four basic polymers with specific end‐capping, which exhibited high‐glass transition temperatures (Tg > 100 °C) and excellent thermal stability, were used as foundations of the WPF's synthesis; a blue‐light polymer (PFB2) end‐capped with azide groups can easily react with acetylene end‐capped polymers (PFB1, PFG1, and PFR1, which are emitting blue‐, green‐ and red‐light, respectively) to form triazole‐ring linkages in polar solvents such as N,N‐dimethylforamide/toluene co‐solvent at moderate temperature of 100 °C, even without metal‐catalyst. Several WPFs that consist of these four basic polymers in certain ratios were derived, and the polymer light‐emitting diode device based on the high‐molecular weight WPF was achieved and demonstrated a maximum brightness of 7551 cd/m2 (at 12.5 V) and a maximum yield of 5.5 cd/A with Commission Internationale de l'Eclairage coordinates of (0.30, 0.33) using fine‐tuned WPF5 as emitting material. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Copolyamides of PA 66/6 lithium 5‐sulfoisophthalic acid (LiSIPA) containing up to 40 mol % of LiSIPA were prepared in a 1L‐pilot reactor operating at high pressures and high temperatures. Interestingly, the presence of lithium sulfonate moieties highly impacted the glass transition temperature of the polyamide. The Tg increased from 59 °C for PA 66 to 155 °C for a copolymer containing about 40 mol % of LiSIPA. 1,3‐Dihexylbenzenedicarboxamide and lithium p‐toluenesulfonate were synthesized as model compounds to investigate the interaction of lithium sulfonate moieties and amide functions. Infrared spectroscopy using ATR technology performed on mixture of both compounds showed that the carbonyl group of amide functions interacts with the lithium cation of lithium sulfonate moieties. Similar S? O and C? O adsorption bands were observed in copolyamides PA 66/6LiSIPA and in mixture of model compounds, which strongly suggest the formation in the copolyamides of physical cross‐linking points centered on lithium cations coordinated by carbonyl groups of amide functions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Two novel poly(amine‐hydrazide)s were prepared from the polycondensation reactions of the dicarboxylic acid, 9‐[N,N‐di(4‐carboxyphenyl)amino]anthracene ( 1 ), with terephthalic dihydrazide ( TPH ) and isophthalic dihydrazide ( IPH ) via the Yamazaki phosphorylation reaction, respectively. The poly(amine‐hydrazide)s were readily soluble in many common organic solvents and could be solution cast into transparent films. Differential scanning calorimetry (DSC) indicated that these hydrazide polymers had glass‐transition temperatures (Tg) in the range of 182–230 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(amine‐1,3,4‐oxadiazole)s had useful levels of thermal stability associated with high Tg (263–318 °C), 10% weight‐loss temperatures in excess of 500 °C, and char yield at 800 °C in nitrogen higher than 55%. These organo‐soluble anthrylamine‐based poly(amine‐hydrazide)s and poly (amine‐1,3,4‐oxadiazole)s exhibited maximum UV‐vis absorption at 346–349 and 379–388 nm in N‐methyl‐2‐pyrrolidone (NMP) solution, respectively. Their photoluminescence spectra in NMP solution showed maximum bands around 490–497 nm in the green region. The poly(amine‐hydrazide) I ‐ IPH showed a green photoluminescence at 490 nm with PL quantum yield of 29.9% and 17.0% in NMP solution and film state, respectively. The anthrylamine‐based poly(amine‐1,3,4‐oxadiazole)s revealed a electrochromic characteristics with changing color from the pale yellow neutral form to the red reduced form when scanning potentials negatively from 0.00 to ?2.20 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1584–1594, 2009  相似文献   

20.
Star polymers with end‐functionalized arm chains (surface‐functionalized star polymers) were synthesized by the in situ linking reaction between ethylene glycol dimethacrylate (linking agent) and an α‐end‐functionalized linear living poly(methyl methacrylate) in RuCl2(PPh3)3‐catalyzed living radical polymerization; the terminal on the surface functionalities included amides, alcohols, amines, and esters. The star polymers were obtained in high yields (75–90%) with initiating systems consisting of a functionalized 2‐chloro‐2‐phenylacetate or ‐acetamide [F? C(O)CHPhCl; F = nPrNH? , HOCH2CH2O? , Me2NCH2CH2O? , or EtO? ; initiator] and n‐Bu3N (additive). The yield was lower with a functionalized 2‐bromoisobutyrate [Me2NCH2CH2OC(O)CMe2Br] initiator or with Al(Oi‐Pr)3 as an additive. Multi‐angle laser light scattering analysis showed that the star polymers had arm numbers of 10–100, radii of gyration of 6–23 nm, and weight‐average molecular weights of 1.3 × 105 to 3.0 × 106, which could be controlled by the molar ratio of the linking agent to the linear living polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1972–1982, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号