首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If Ω denotes an open subset of Rn (n = 1, 2,…), we define an algebra g (Ω) which contains the space D′(Ω) of all distributions on Ω and such that C(Ω) is a subalgebra of G (Ω). The elements of G (Ω) may be considered as “generalized functions” on Ω and they admit partial derivatives at any order that generalize exactly the derivation of distributions. The multiplication in G(Ω) gives therefore a natural meaning to any product of distributions, and we explain how these results agree with remarks of Schwartz on difficulties concerning a multiplication of distributions. More generally if q = 1, 2,…, and ?∈OM(R2q)—a classical Schwartz notation—for any G1,…,GqG(σ), we define naturally an element ?G1,…,Gq∈G(σ). These results are applied to some differential equations and extended to the vector valued case, which allows the multiplication of vector valued distributions of physics.  相似文献   

2.
Consider a random Hamiltonian HN(σ) for σ∈ΣN={0,1}N. We assume that the family (HN(σ)) is jointly Gaussian centered and that for σ1,σ2∈ΣN,N?1EHN(σ1)HN(σ2) =ξ(N?1i?Nσ1iσ2i) for a certain function ξ on R. F. Guerra proved the remarkable fact that the free energy of the system with Hamiltonian HN(σ)+h∑i?Nσi is bounded below by the free energy of the Parisi solution provided that ξ is convex on R. We prove that this fact remains (asymptotically) true when the function ξ is only assumed to be convex on R+. This covers in particular the case of the p-spin interaction model for any p. To cite this article: M. Talagrand, C. R. Acad. Sci. Paris, Ser. I 337 (2003).  相似文献   

3.
A construction is given for difference sets in certain non-cyclic groups with the parameters v = qs+1{[(qs+1 ? 1)(q ? 1)] + 1}, k = qs(qs+1 ? 1)(q ? 1), λ = qs(qs ? 1)(q ? 1), n = q2s for every prime power q and every positive integer s. If qs is odd, the construction yields at least 12(qs + 1) inequivalent difference sets in the same group. For q = 5, s = 2 a difference set is obtained with the parameters (v, k, λ, n) = (4000, 775, 150, 625), which has minus one as a multiplier.  相似文献   

4.
Here it is proved that a cyclic (n, k) code over GF(q) is equidistant if and only if its parity check polynomial is irreducible and has exponent e = (qk ? 1)a where a divides q ? 1 and (a, k) = 1. The length n may be any multiple of e. The proof of this theorem also shows that if a cyclic (n,k) code over GF(q) is not a repetition of a shorter code and the average weight of its nonzero code words is integral, then its parity check polynomial is irreducible over GF(q) with exponent n = (qk ? 1)a where a divides q ? 1.  相似文献   

5.
6.
It is shown that the method of Chernoff developed in the preceding paper can be modified to prove the essential self-adjointness on C0(Rm) of all positive powers of the Schrödinger operator T = ? Δ + q if q real and in C(Rm) and if T ? ?a ? b ¦ x ¦2on C0(Rm).  相似文献   

7.
This paper presents sufficient conditions for the existence of a nonnegative and stable equilibrium point of a dynamical system of Volterra type, (1) (ddt) xi(t) = ?xi(t)[fi(x1(t),…, xn(t)) ? qi], i = 1,…, n, for every q = (q1,…, qn)T?Rn. Results of a nonlinear complementarity problem are applied to obtain the conditions. System (1) has a nonnegative and stable equilibrium point if (i) f(x) = (f1(x),…,fn(x))T is a continuous and differentiable M-function and it satisfies a certain surjectivity property, or (ii), f(x) is continuous and strongly monotone on R+0n.  相似文献   

8.
Let Q be a self-adjoint, classical, zeroth order pseudodifferential operator on a compact manifold X with a fixed smooth measure dx. We use microlocal techniques to study the spectrum and spectral family, {ES}S∈R as a bounded operator on L2(X, dx).Using theorems of Weyl (Rend. Circ. Mat. Palermo, 27 (1909), 373–392) and Kato (“Perturbation Theory for Linear Operators,” Springer-Verlag, 1976) on spectra of perturbed operators we observe that the essential spectrum and the absolutely continuous spectrum of Q are determined by a finite number of terms in the symbol expansion. In particular SpecESSQ = range(q(x, ξ)) where q is the principal symbol of Q. Turning the attention to the spectral family {ES}S∈R, it is shown that if dEds is considered as a distribution on R×X×X it is in fact a Lagrangian distribution near the set {σ=0}?T1(R×X×X)0 where (s, x, y, σ, ξ,η) are coordinates on T1(R×X×X) induced by the coordinates (s, x, y) on R×X×X. This leads to an easy proof that?(Q) is a pseudodifferential operator if ?∈C(R) and to some results on the microlocal character of Es. Finally, a look at the wavefront set of dEds leads to a conjecture about the existence of absolutely continuous spectrum in terms of a condition on q(x, ξ).  相似文献   

9.
Real constant coefficient nth order elliptic operators, Q, which generate strongly continuous semigroups on L2(Rk) are analyzed in terms of the elementary generator,
A = (?n)(n2 ? 1)(n!)?1kj = 1?n?xjn
, for n even. Integral operators are defined using the fundamental solutions pn(x, t) to ut = Au and using real polynomials ql,…, qk on Rm by the formula, for q = (ql,…, qk),
(F(t)?)(x) = ∫
Rm
?(x + q(z)) Pn(z, t)dz
. It is determined when, strongly on L2(Rk),
etQ = limj → ∞ Ftjj
. If n = 2 or k = 1, this can always be done. Otherwise the symbol of Q must have a special form.  相似文献   

10.
Given a cocycle a(t) of a unitary group {U1}, ?∞ < t < ∞, on a Hilbert space H, such that a(t) is of bounded variation on [O, T] for every T > O, a(t) is decomposed as a(t) = f;t0Usxds + β(t) for a unique x ? H, β(t) yielding a vector measure singular with respect to Lebesgue measure. The variance is defined as σ2({rmUt}, a(t)) = limT→∞(1T)∥∝t0 Us x ds∥2 if existing. For a stationary diffusion process on R1, with Ω1, the space of paths which are natural extensions backwards in time, of paths confined to one nonsingular interval J of positive recurrent type, an information function I(ω) is defined on Ω1, based on the paths restricted to the time interval [0, 1]. It is shown that I(Ω) is continuous and bounded on Ω1. The shift τt, defines a unitary representation {Ut}. Assuming Ω1 I dm = 0, dm being the stationary measure defined by the transition probabilities and the invariant measure on J, I(Ω) has a C spectral density function f;. It is then shown that σ2({Ut}, I) = f;(O).  相似文献   

11.
We show how inequalities of the type ∥F∥p ? C(p, q) a1 + (1p)? (1q) ∥ F ′ ∥q′ when F(0) = 0 can be used to find lower bounds of the first eigenvalue of the integral equation F(z) = λ0ak(s, z)F(s) ds.  相似文献   

12.
A sufficient condition is given for the operator T0: C0(Rm) → L2(Rm) given by
T0K?1M(i??x1+b1)a1K(i??Nk+bk)+q
to be essentially self-adjoint. This condition is sufficiently general to admit certain potentials q having unbounded oscillations in a neighborhood of ∞.  相似文献   

13.
A lower bound {14(4q + 5)}12 + 32 is given for the minimum weight of the symmetry code C(q) over GF(3), which is introduced by Pless [3].  相似文献   

14.
Nonlinear partial differential operators G: W1,p(Ω) → Lq(Ω) (1 ? p, q ∞) having the form G(u) = g(u, D1u,…, DNu), with g?C(R × RN), are here shown to be precisely those operators which are local, (locally) uniformly continuous on, W1,∞(Ω), and (roughly speaking) translation invariant. It is also shown that all such partial differential operators are necessarily bounded and continuous with respect to the norm topologies of W1,p(Ω) and Lq(Ω).  相似文献   

15.
On Rn, n?1 and n≠2, we prove the existence of a sharp constant for Sobolev inequalities with higher fractional derivatives. Let s be a positive real number. For n>2s and q=2nn?2s any function f∈Hs(Rn) satisfies
6f62q?Sn,s(?Δ)s/2f22,
where the operator (?Δ)s in Fourier spaces is defined by (?Δ)sf(k):=(2π|k|)2sf(k). To cite this article: A. Cotsiolis, N.C. Tavoularis, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 801–804.  相似文献   

16.
Let Cn×n and Hn denote respectively the space of n×n complex matrices and the real space of n×n hermitian matrices. Let p,q,n be positive integers such that p?q?n. For A?Cn×n, the (p,q)-numerical range of A is the set
Wp,q(A)={trCp(JqUAU1):U unitary}
, where Cp(X) is the pth compound matrix of X, and Jq is the matrix Iq?On-q. Let L denote Hn or Cn×n. The problem of determining all linear operators T: LL such that
Wp,q(T(A))=Wp,q(A) for all A?L
is treated in this paper.  相似文献   

17.
Let P(Θ, τ) 6 A, θ ∈ Θ ? R, τ ∈ T ? Rp denote a family of probability measures, where τ denotes the vector of nuisance parameters. Starting from randomized asymptotic maximum likelihood (as. m. l.) estimators for (θ, τ) we construct randomized estimators which are asymptotically median unbiased up to o(n?12) resp. test procedures which are as. similar of level α + o(n?12) (for testing θ = θ0, τT against one sided alternatives). The estimation procedures are second-order efficient in the class of estimators which are median unbiased up to o(n?12) and the test procedures are second-order efficient in the class of tests which are as. of level α + o(n?12). These results hold without any continuity condition on the family of probability measures.  相似文献   

18.
For an open set Ω ? RN, 1 ? p ? ∞ and λ ∈ R+, let W?pλ(Ω) denote the Sobolev-Slobodetzkij space obtained by completing C0(Ω) in the usual Sobolev-Slobodetzkij norm (cf. A. Pietsch, “r-nukleare Sobol. Einbett. Oper., Ellipt. Dgln. II,” Akademie-Verlag, Berlin, 1971, pp. 203–215). Choose a Banach ideal of operators U, 1 ? p, q ? ∞ and a quasibounded domain Ω ? RN. Theorem 1 of the note gives sufficient conditions on λ such that the Sobolev-imbedding map W?pλ(Ω) λ Lq(Ω) exists and belongs to the given Banach ideal U: Assume the quasibounded domain fulfills condition Ckl for some l > 0 and 1 ? k ? N. Roughly this means that the distance of any x ? Ω to the boundary ?Ω tends to zero as O(¦ x ¦?l) for ¦ x ¦ → ∞, and that the boundary consists of sufficiently smooth ?(N ? k)-dimensional manifolds. Take, furthermore, 1 ? p, q ? ∞, p > k. Then, if μ, ν are real positive numbers with λ = μ + v ∈ N, μ > λ S(U; p,q:N) and v > N/l · λD(U;p,q), one has that W?pλ(Ω) λ Lq(Ω) belongs to the Banach ideal U. Here λD(U;p,q;N)∈R+ and λS(U;p,q;N)∈R+ are the D-limit order and S-limit order of the ideal U, introduced by Pietsch in the above mentioned paper. These limit orders may be computed by estimating the ideal norms of the identity mappings lpnlqn for n → ∞. Theorem 1 in this way generalizes results of R. A. Adams and C. Clark for the ideals of compact resp. Hilbert-Schmidt operators (p = q = 2) as well as results on imbeddings over bounded domains.Similar results over general unbounded domains are indicated for weighted Sobolev spaces.As an application, in Theorem 2 an estimate is given for the rate of growth of the eigenvalues of formally selfadjoint, uniformly strongly elliptic differential operators with Dirichlet boundary conditions in L2(Ω), where Ω fulfills condition C1l.For an open set Ω in RN, let W?pλ(Ω) denote the Sobolev-Slobodetzkij space obtained by completing C0(Ω) in the usual Sobolev-Slobodetzkij norm, see below. Taking a fixed Banach ideal of operators and 1 ? p, q ? ∞, we consider quasibounded domains Ω in RN and give sufficient conditions on λ such that the Sobolev imbedding operator W?pλ(Ω) λ Lq(Ω) exists and belongs to the Banach ideal. This generalizes results of C. Clark and R. A. Adams for compact, respectively, Hilbert-Schmidt operators (p = q = 2) to general Banach ideals of operators, as well as results on imbeddings over bounded domains. Similar results over general unbounded domains may be proved for weighted Sobolev spaces. As an application, we give an estimate for the rate of growth of the eigenvalues of formally selfadjoint, uniformly strongly elliptic differential operators with Dirichlet boundary conditions in L2(Ω), where Ω is a quasibounded open set in RN.  相似文献   

19.
Let θ be an irrational number, and consider sequences of the form ωθ = 〈k≥0 of points in the circle R/Z. By employing symmetry, we can show that the discrepancy DN(ωθ) of the finite sequence 〈0≤k<N is determined by its behavior on the N arcs whose endpoints are and (N ? 1 ? i)θ for 0 ≤ i < N. We then use continued fraction methods to analyze its behavior on these arcs. The resulting expression for DN(ωθ has several consequences. First, we show that the discrepancies DN(ωσ) and DN(ωτ) are closely related if σ and τ are equivalent irrationals; in particular, we prove the equality lim supN(NDNσ)logN) = lim supN(NDNτ)logN). Finally, we compute a tight asymptotic bound on DN(ωθ) when θ has the special form θ = (√m2 + 4 ? m)2 for some positive integer m by showing that
limNsupNDn(ωθ)log N={m4 log(1θ) if m is even,(m2+3m2+4)n4 log (1θ) if m is odd.
  相似文献   

20.
Let Fm×n (m?n) denote the linear space of all m × n complex or real matrices according as F=C or R. Let c=(c1,…,cm)≠0 be such that c1???cm?0. The c-spectral norm of a matrix A?Fm×n is the quantity
6A6ci=Imciσi(A)
. where σ1(A)???σm(A) are the singular values of A. Let d=(d1,…,dm)≠0, where d1???dm?0. We consider the linear isometries between the normed spaces (Fn,∥·∥c) and (Fn,∥·∥d), and prove that they are dual transformations of the linear operators which map L(d) onto L(c), where
L(c)= {X?Fm×n:X has singular values c1,…,cm}
.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号