首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We develop in this article an a posteriori error estimator for the P1‐nonconforming finite element approximation, for a diffusion‐reaction equation. We adopt the error in a constitutive law approach in two and three dimensional space, for not necessary piecewise constant data of problems. The efficiency and the reliability of our estimators are proved, neither Helmholtz decomposition of the error nor saturation assumption. The constants are explicitly given, which prove the robustness of these estimators. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 950–976, 2015  相似文献   

2.
For elliptic interface problems with flux jumps, this article studies robust residual‐ and recovery‐based a posteriori error estimators for the conforming finite element approximation. The residual estimator is a natural extension of that developed in [Bernardi and Verfürth, Numer Math 85 (2000), 579–608; Petzoldt, Adv Comp Math 16 (2002), 47–75], and the recovery estimator is a nontrivial extension of our method developed in Cai and Zhang, SIAM J Numer Anal 47 (2009) 2132–2156. It is shown theoretically that reliability and efficiency bounds of these error estimators are independent of the jumps provided that the distribution of the coefficients is locally monotone. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28:476–491, 2012  相似文献   

3.
4.
We consider the coupling of dual‐mixed finite elements and boundary elements to solve a mixed Dirichlet–Neumann problem of plane elasticity. We derive an a‐posteriori error estimate that is based on the solution of local Dirichlet problems and on a residual term defined on the coupling interface. The general error estimate does not make use of any special finite element or boundary element spaces. Here the residual term is given in a negative order Sobolev norm. In practical applications, where a certain boundary element subspace is used, this norm can be estimated by weighted local L2‐norms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
We consider a class of finite‐volume schemes on unstructured meshes for symmetric hyperbolic linear systems of balance laws in two and three space dimensions. This class of schemes has been introduced and analyzed by Vila and Villedieu ( 5 ). They have proven an a priori error estimate for approximations of smooth solutions. We extend the results to weak solutions. This is the base to derive an a posteriori error estimate for finite‐volume approximations of weak solutions. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

6.
We consider mixed finite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangulations. In particular, we present and analyze four different kinds of error estimators: a residual based estimator, a hierarchical one, error estimators relying on the solution of local subproblems and on a superconvergence result, respectively. Finally, we examine the relationship between the presented error estimators and compare their local components.

  相似文献   


7.
8.
We show some of the properties of the algebraic multilevel iterative methods when the hierarchical bases of finite elements (FEs) with rectangular supports are used for solving the elliptic boundary value problems. In particular, we study two types of hierarchies; the so‐called h‐ and p‐hierarchical FE spaces on a two‐dimensional domain. We compute uniform estimates of the strengthened Cauchy–Bunyakowski–Schwarz inequality constants for these spaces. Moreover, for diagonal blocks of the stiffness matrices corresponding to the fine spaces, the optimal preconditioning matrices can be found, which have tri‐ or five‐diagonal forms for h‐ or p‐refinements, respectively, after a certain reordering of the elements. As another use of the hierarchical bases, the a posteriori error estimates can be computed. We compare them in test examples for h‐ and p‐hierarchical FEs with rectangular supports. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
We consider the Stokes eigenvalue problem. For the eigenvalues we derive both upper and lower a‐posteriori error bounds. The estimates are verified by numerical computations. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

10.
The local averaging technique has become a popular tool in adaptive finite element methods for solving partial differential boundary value problems since it provides efficient a posteriori error estimates by a simple postprocessing. In this paper, the technique is introduced to solve a class of symmetric eigenvalue problems. Its efficiency and reliability are proved by both the theory and numerical experiments structured meshes as well as irregular meshes. Dedicated to Charles A. Micchelli on his 60th birthday Mathematics subject classifications (2000) 65N15, 65N25, 65N30, 65N50. Subsidized by the Special Funds for Major State Basic Research Projects, and also supported in part by the Chinese National Natural Science Foundation and the Knowledge Innovation Program of the Chinese Academy of Sciences.  相似文献   

11.
A linearized compressible viscous Stokes system is considered. The a posteriori error estimates are defined and compared with the true error. They are shown to be globally upper and locally lower bounds for the true error of the finite element solution. Some numerical examples are given, showing an efficiency of the estimator. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 412–431, 2004.  相似文献   

12.
Charalambos Makridakis In this paper, we derive a posteriori error estimates for space-discreteapproximations of the time-dependent Stokes equations. By usingan appropriate Stokes reconstruction operator, we are able towrite an auxiliary error equation, in pointwise form, that satisfiesthe exact divergence-free condition. Thus, standard energy estimatesfrom partial differential equation theory can be applied directly,and yield a posteriori estimates that rely on available correspondingestimates for the stationary Stokes equation. Estimates of optimalorder in L(L2) and L(H1) for the velocity are derived for finite-elementand finite-volume approximations.  相似文献   

13.
Luka Grubišić 《PAMM》2006,6(1):59-62
We combine abstract eigenvalue/eigenvector estimates (from our earlier work) with a saturation assumption for finite element solution of associated stationary problem to obtain a posteriori estimates of the accuracy of finite element Rayleigh–Ritz approximations. Attention will be payed to the interplay between the accuracy estimate for the finite element method and a strategy for generating an adapted mesh. The obtained results use a preconditioned residuum of Neymeyr and extend his study of eigenvalue approximations with eigenvector estimates. We also prove that this eigenvalue estimator is equivalent to the global error. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
An implicit a posteriori error estimation technique is presented and analyzed for the numerical solution of the time-harmonic Maxwell equations using Nédélec edge elements. For this purpose we define a weak formulation for the error on each element and provide an efficient and accurate numerical solution technique to solve the error equations locally. We investigate the well-posedness of the error equations and also consider the related eigenvalue problem for cubic elements. Numerical results for both smooth and non-smooth problems, including a problem with reentrant corners, show that an accurate prediction is obtained for the local error, and in particular the error distribution, which provides essential information to control an adaptation process. The error estimation technique is also compared with existing methods and provides significantly sharper estimates for a number of reported test cases.

  相似文献   


15.
Local a posteriori error estimators are derived for linear elliptic problems over general polygonal domains in 2d. The estimators lead to a sharp upper bound for the energy error in a local region of interest. This upper bound consists of H1‐type local error indicators in a slightly larger subdomain, plus weighted L2‐type local error indicators outside this subdomain, which account for the pollution effects. This constitutes the basis of a local adaptive refinement procedure. Numerical experiments show a superior performance than the standard global procedure as well as the generation of locally quasi‐optimal meshes. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 421–442, 2003  相似文献   

16.
A reliable and efficient residual‐based a posteriori error estimator is derived for the Ciarlet‐Raviart mixed finite element method for the biharmonic equation on polygonal domains. The performance of the estimator is illustrated by numerical experiments. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

17.
Energy norm a posteriori error estimates for mixed finite element methods   总被引:4,自引:0,他引:4  
This paper deals with the a posteriori error analysis of mixed finite element methods for second order elliptic equations. It is shown that a reliable and efficient error estimator can be constructed using a postprocessed solution of the method. The analysis is performed in two different ways: under a saturation assumption and using a Helmholtz decomposition for vector fields.

  相似文献   


18.
19.
In this article, we consider the finite element discretization of the Navier‐Stokes problem coupled with convection‐diffusion equations where both the viscosity and the diffusion coefficients depend on the temperature. Existence and uniqueness of a solution are established. We prove a posteriori error estimates.  相似文献   

20.
** Corresponding author. Email: l.elalaoui{at}imperial.ac.uk*** Email: ern{at}cermics.enpc.fr**** Email: erik.burman{at}epfl.ch We analyse a non-conforming finite-element method to approximateadvection–diffusion–reaction equations. The methodis stabilized by penalizing the jumps of the solution and thoseof its advective derivative across mesh interfaces. The a priorierror analysis leads to (quasi-)optimal estimates in the meshsize (sub-optimal by order in the L2-norm and optimal in thebroken graph norm for quasi-uniform meshes) keeping the Pécletnumber fixed. Then, we investigate a residual a posteriori errorestimator for the method. The estimator is semi-robust in thesense that it yields lower and upper bounds of the error whichdiffer by a factor equal at most to the square root of the Pécletnumber. Finally, to illustrate the theory we present numericalresults including adaptively generated meshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号