首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Physics of the Solid State - The computer simulation methods have been applied to calculate structure and energy of symmetric tilt grain boundaries (GB) with the misorientation axes [110] and...  相似文献   

3.
M. A. Tschopp 《哲学杂志》2013,93(25):3871-3892
Atomistic simulations were employed to investigate the structure and energy of asymmetric tilt grain boundaries in Cu and Al. In this work, we examine the Σ5 and Σ13 systems with a boundary plane rotated about the ? 100 ? misorientation axis, and the Σ9 and Σ11 systems rotated about the ? 110 ? misorientation axis. Asymmetric tilt grain boundary energies are calculated as a function of inclination angle and compared with an energy relationship based on faceting into the two symmetric tilt grain boundaries in each system. We find that asymmetric tilt boundaries with low index normals do not necessarily have lower energies than boundaries with similar inclination angles, contrary to previous studies. Further analysis of grain boundary structures provides insight into the asymmetric tilt grain boundary energy. The Σ5 and Σ13 systems in the ? 100 ? system agree with the aforementioned energy relationship; structures confirm that these asymmetric boundaries facet into the symmetric tilt boundaries. The Σ9 and Σ11 systems in the ? 110 ? system deviate from the idealized energy relationship. As the boundary inclination angle increases towards the Σ9 (221) and Σ11 (332) symmetric tilt boundaries, the minimum energy asymmetric boundary structures contain low index {111} and {110} planes bounding the interface region.  相似文献   

4.
B. Syed  D. Catoor  R. Mishra 《哲学杂志》2013,93(12):1499-1522
Magnesium bicrystals were grown with symmetric and asymmetric tilt boundaries about the [10–10] axis using the vertical Bridgman technique. Isothermal constant load tensile tests were conducted on these bicrystals in the temperature range 300–500°C and relative displacements of the two grains were measured to obtain an appreciation for grain boundary motion characteristics. Coupled grain boundary motion was noted in almost all cases with the degree of tangential motion versus migration changing with tilt misorientation, temperature and applied stress. Specifically, within the family of symmetric bicrystals evaluated, a minimum in grain boundary displacement in the specimen plane was observed at a tilt misorientation of 20°. In specific stress/temperature regimes, rigid body sliding was observed for the particular case of a 35° asymmetric tilt misorientation. The ease of basal and prism slip in magnesium at the temperatures considered and the consequential impingement of intragranular dislocations on the bicrystal boundary and their decomposition and motion along the boundary are thought to play an important role in the observed coupled motion of these tilt boundaries.  相似文献   

5.
The intrinsic structure of different tilt grain boundaries in bcc molybdenum is determined by electron microscopy and compared to the ones obtained after an annealing treatment of the same boundaries in presence of different impurities like carbon and nickel. Specially grown bicrystals with tilt axes parallel to [001] and [011] are used. The boundaries correspond to the major coincidence relationships ∑ = 5, ∑ = 3 and ∑ = 11. Their experimental atomic structure is compared to calculated ones. After the treatments in presence of carbon or nickel the new structure is determined by electron microscopy from the structural and chemical aspect. After a treatment in presence of carbon the ∑ = 5[001]{310} boundary contains either a segregation or a very thin precipitate layer of a new MoCx quadratic phase. In presence of nickel, the physical phenomenon is possibly a wetting of the boundary. The different [011] tilt boundaries have a different behavior according to their respective energy.  相似文献   

6.
7.
8.
The studies of three different laboratories on grain boundary migration in Fe-3wt.%Si alloys are presented. In all cases bicrystal techniques employing capillarity as driving force were used. [100] tilt boundaries were studied in the temperature range from 1223 K to 1373 K, and [110] tilt boundaries in the range from 1220 K to 1625 K. Proportionality between grain boundary velocity and driving force was confirmed. All data fulfil a linear relation between activation enthalpies and logarithms of the pre-exponential factors, corresponding to a compensation temperature of 1386 K where all boundaries theoretically should possess the same mobility. A considerably lower activation enthalpy was found in one case for an asymmetrical grain boundary compared to the symmetrical boundary of the same misorientation. High values of activation enthalpy of migration were found for special [100] boundaries compared to general ones although an opposite tendency was also observed for [100] boundaries.  相似文献   

9.
The mechanical response of symmetric tilt grain boundaries (GBs) in silicon bicrystals under shear loading are characterized using molecular dynamics simulations. It is seen that under shear, high-angle GBs namely Σ5 and Σ13 having a rotation axis [0 0 1] demonstrate coupled GB motion, such that the displacement of grains parallel to the GB interface is accompanied by normal GB motion. An atomic-scale characterization revealed that concerted rotations of silicon tetrahedra within the GB are the primary mechanisms leading to the coupled GB motion. Interestingly, so far, this phenomenon has only been examined in detail for metallic systems. A distinguishing feature of the coupled GB motion observed for the silicon symmetric tilt bicrystals as compared to metallic bicrystals is the fact that in the absence of shear, spontaneous coupled motion is not observed at high temperatures.  相似文献   

10.
Yttria-stabilized cubic zirconia bicrystals with [110] symmetric tilt grain boundaries are systematically fabricated by the diffusion bonding method. It is revealed that the grain-boundary atomistic structures, excess energies and solute segregation behaviours are strongly dependent on the macroscopic geometries of the boundaries. High-resolution transmission electron microscopy combined with lattice statics calculations suggests that the grain-boundary structures are characterized by the accumulation of coordination-deficient cation sites at their cores, whose densities have a clear correlation with excess energies and amounts of solute segregation. The orientation dependence of grain-boundary properties in cubic zirconia can thus be linked and understood via local grain-boundary atomistic structures with the characteristic miscoordinated cation sites.  相似文献   

11.
The energy of grain boundary shears is calculated for symmetric grain boundaries (GBs) using ab initio methods and molecular-dynamic modeling in order to elucidate mechanisms that control GB shear-migration coupling in typical symmetric GBs, such as Σ3 (111), Σ5 (012), Σ5 (013) and Σ11 (113) tilt GBs, in Al bicrystal. The energy of generalized grain-boundary stacking faults (GB–SF) is determined, and the preferred directions and the energy barrier are established for grain-boundary slippage. It is shown that the relative slippage of neighboring grains at certain directions of particle shears is accompanied by conservative migration of GB in the direction perpendicular to its plain. The modeling data are comparative to known grain-boundary shear-migration coupling mechanisms in Al.  相似文献   

12.
Activation energy of self-diffusion along symmetric tilt grain boundaries 〈111〉 in the Ni3Al inter-metallic compound has been calculated depending on the temperature and misorientation angle. For comparison, two types of potentials of interatomic interaction have been used: pair Morse potentials and multi-particle Cleri-Rosato potentials. It has been shown that the activation energy of grain-boundary diffusion increases with temperature on applying the additional diffusion mechanisms. Three temperature ranges with various activation energies have been found.  相似文献   

13.
Monte Carlo and overlapping distributions Monte Carlo (ODMC) techniques are employed to simulate grain boundary (GB) segregation in a number of single-phase binary metallic alloys—the Au-Pt, Cu-Ni, Ni-Pd, and Ni-Pt systems. For a series of symmetric [001] twist and [001] tilt boundaries, with coincident site lattice (CSL) structures, we demonstrate that the Gibbsian interfacial excess of solute is a systematic function of the misorientation angle. We also explore in detail whether the GB solid solution behavior is ideal or nonideal by comparing the results of Monte Carlo and ODMC simulations. The range of binding free energies of specific atomic sites at GBs for solute atoms is also studied. The simulational results obtained demonstrate that the thermodynamic and statistical thermodynamic models commonly used to explain GB segregation are too simple to account for the microscopic segregation patterns observed, and that it is extremely difficult. If not impossible, to extract the observed microscopic information employing macroscopic models.  相似文献   

14.
Physics of the Solid State - The computer simulation methods have been applied to calculate structure and energy of symmetric tilt grain boundaries with the misorientation axis [100]. The...  相似文献   

15.
In situ high-resolution transmission electron microscopy is used to study grain boundary structure and kinetics in bicrystalline Au films at elevated temperature. We report the first direct evidence for the existence of cooperative atomic motion in grain boundary migration. Certain nanoregions at grain boundaries, typically involving up to several hundred atoms, are found to switch back and forth between neighboring grains. Reversible structural fluctuations at temperatures near 0.5T(m) and above have been discovered in [110] and [001] tilt, as well as in general grain boundaries.  相似文献   

16.
Weckman  A. V.  Dem’yanov  B. F. 《JETP Letters》2020,111(11):643-646
JETP Letters - The possibility of the pore formation at the tilt grain boundaries with the [100] misorientation axis is studied by computer simulation methods. Three special boundaries and three...  相似文献   

17.
The microstructure and transport properties of various 90° grain boundaries in (103) oriented YBa2Cu3O7(YBCO) thin films grown epitaxially in situ by 90° off-axis sputtering are compared. The (103) films grown on (101) LaAlO3 and (101) SrTiO3 substrates have specific sets of 90° grain boundaries in both principal in-plane directions: 90° [010] twist boundaries along the [101] direction, and 90° [010] symmetrical tilt boundaries and 90° [010] basal-plane-faced tilt boundaries along the (301) direction. No weak-link behavior is observed across some of these boundaries by transport critical current density and normalized magnetic field dependence of J c measurements along both those in-plane directions. High-resolution transmission electron microscopy reveals variations in the structure and microfaceting of the 90° boundaries, which may contribute to the absence of weak-link behavior. These results have important implications for understanding the behavior of step-edge Josephson junctions.  相似文献   

18.
Atomic recoil events on free surfaces orthogonal to two different anti-phase boundaries (APBs) and two grain boundaries (GBs) in Ni3Al are simulated using molecular dynamics methods. The threshold energy for sputtering, E sp, and adatom creation, E ad, are determined as a function of recoil direction. The study is relevant to FEG STEM (a scanning transmission electron microscope fitted with a field emission gun) experiments on preferential Al sputtering and/or enhancement of the Ni–Al ratio near boundaries. Surfaces intersected by {110} and {111} APBs have minimum E sp of 6.5?eV for an Al atom on the Ni–Al mixed (M) surface, which is close to the value of 6.0?eV for a perfect M surface. High values of E sp of an Al atom generally occur at a large angle to the surface normal and depend strongly on the detailed atomic configuration of the surface. The mean E sp, averaged over all recoil directions, reveals that APBs have a small effect on the threshold sputtering. However, the results for E ad imply that an electron beam could create more Al adatoms on surfaces intersected by APBs than on those without. The equilibrium, minimum energy structures for a (001) surface intersected by either Σ5[001](210) or Σ25[001](340) symmetric tilt grain boundaries are computed. E sp for surface Al atoms near these GBs increases monotonically with increasing recoil angle to the surface normal, with a minimum value, which is only about 1?eV different from that obtained for a perfect surface. Temperature up to 300?K has no effect on this result. It is concluded that the experimental observations of preferential sputtering are due to effects beyond those for E sp studied here. Possible reasons for this are discussed.  相似文献   

19.
Fuhua Cao  Tao Hu 《哲学杂志》2018,98(6):464-483
Grain boundary extra free volume (GB EFV) can be considered as fundamental microstructural parameter for polycrystalline or nano-crystalline materials. Here, we present a systematic first principles study on a group of representative symmetric tilt grain boundaries of Al with various EFVs subjected to vacancy formation and Mg segregation. All grain boundaries were constructed using the coincident site lattice (CSL) and the structural unit (SU) models. It was found that the SU model is superior to the CSL in describing FCC-Al GBs, the same as we previously revealed for BCC-Fe. The predicted relation between GB misorientation angle and EFV, and the predicted EFV criteria for a stable GB, both agree with available experimental observations. Vacancy formation and Mg segregation show stronger preference to those GBs with high EFV values, due to the resultant high levels of atomic disorder. These findings not only provide a new, atomistic perspective on the significance of EFV, but also suggest a viable means of predicting GB properties based on direct experimental characterisation of GB EFVs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号