首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The development of magnesium electrolytes for battery applications has been the demand for electrochemical devices. To meet such demand, in this work solid blend polymer electrolytes were prepared using polyvinyl alcohol (PVA) and polyacrylonitrile (PAN) (92.5PVA:7.5PAN) as host polymer, magnesium chloride (MgCl2) of different molar mass percentage (m.m.%) (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6%) as salt and dimethylformamide (DMF) as solvent. Structural, vibrational, thermal, electrical, and electrochemical properties of the prepared electrolytes were investigated using different techniques such as X-ray diffraction pattern, FTIR spectroscopy analysis, differential scanning calorimetry (DSC), AC impedance measurement, and transference number measurement. X-ray diffraction studies confirm the minimum volume fraction of crystalline phase for the polymer electrolyte with 0.5 m.m.% of MgCl2. FTIR confirms the complex formation between host polymer and salt. DSC analysis proves the thermal transition of the prepared films are affected by salt concentration. The optimized material with 0.5 m.m.% of MgCl2 offers a maximum electrical conductivity of 1.01 × 10?3 S cm?1 at room temperature. The Mg2+ ion conduction in the blend polymer electrolyte is confirmed from transference number measurement. Electrochemical analysis demonstrates the promising characteristic of these polymer films suitable as electrolytes for primary magnesium batteries. Output potential and discharge characteristics have been analyzed for primary magnesium battery which is constructed using optimized conducting electrolyte.  相似文献   

2.
Thin films of blend polymer electrolytes comprising poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) complexed with ammonium thiocyanate (NH4SCN) salt in different compositions have been prepared by solution casting technique using distilled water as solvent. The prepared films have been investigated by different experimental techniques. The complexation of these films has been studied by FTIR spectroscopy. The increase in amorphousness of the films with increase in NH4SCN content has been confirmed by XRD analysis. The addition of ammonium thiocyanate salt to PVA-PVP polymer blend shows a shift in Tg of the blend. The effect of salt concentration and temperature on the ionic conductivity of the polymer blend films has been analyzed using AC impedance spectroscopy. The maximum conductivity of 6.85 × 10?4 S cm?1 at room temperature has been observed for the blend with 50 mol% PVA-50 mol% PVP complexed with 40 mol% NH4SCN. The activation energy has been found to be minimum (0.24 eV) for this sample. Wagner’s polarization technique shows that the charge transport in these blend films is predominantly due to ions. Using the highest conductivity blend polymer electrolyte, a proton battery has been fabricated and its discharge characteristics have been studied.  相似文献   

3.
Poly (acrylonitrile) (PAN) and ammonium chloride (NH4Cl)-based proton conducting polymer electrolytes with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the host polymer (PAN) with the salt (NH4Cl). DSC measurements show a decrease in Tg with the increase in salt concentration. The conductivity analysis shows that the 25 mol% ammonium chloride doped polymer electrolyte has a maximum ionic conductivity, and it has been found to be 6.4 × 10?3 Scm?1, at room temperature. The temperature dependence of conductivity of the polymer electrolyte complexes appears to obey the Arrhenius nature. The activation energy (Ea = 0.23 eV) has been found to be low for 25 mol% salt doped polymer electrolyte. The dielectric behavior has been analyzed using dielectric permittivity (ε*), and the relaxation frequency (τ) has been calculated from the loss tangent spectra (tan δ). Using this maximum ionic conducting polymer electrolyte, the primary proton conducting battery with configuration Zn + ZnSO4·7H2O/75 PAN:25 NH4Cl/PbO2 + V2O5 has been fabricated and their discharge characteristics have been studied.  相似文献   

4.
Solid polymer electrolytes based on polyacrylonitrile (PAN) doped with ammonium thiocyanate (NH4SCN) in different molar ratios of polymer and salt have been prepared by solution-casting method using DMF as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. A shift in glass transition temperature (T g) of the PAN?:?NH4SCN electrolytes has been observed from the DSC thermograms which indicates the interaction between the polymer and the salt. From the AC impedance spectroscopic analysis, the ionic conductivity has been found to increase with increasing salt concentration up to 30 mol% of NH4SCN beyond which the conductivity decreases and the highest ambient temperature conductivity has been found to be 5.79?×?10?3 S cm?1. The temperature-dependent conductivity of the polymer electrolyte follows an Arrhenius relationship which shows hopping of ions in the polymer matrix. The dielectric loss curves for the sample 70 mol% PAN?:?30 mol% NH4SCN reveal the low-frequency β-relaxation peak pronounced at high temperature, and it may be caused by side group dipoles. The ionic transference number of polymer electrolyte has been estimated by Wagner’s polarization method, and the results reveal that the conductivity species are predominantly ions.  相似文献   

5.
Structural, thermal, electrical and electrochemical behaviour of polymer blend electrolytes comprising polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) as host polymers and Mg(ClO4)2 as dopant salt have been investigated. The changes in the structural properties on the incorporation of dopant in the blends were investigated by XRD and FTIR analyses. Thermal properties of pure PVA–PVP blend and their complexes were examined by DSC to measure how the thermal transitions of the prepared films were affected by different concentration of Mg(ClO4)2. The ionic conductivity and dielectric behaviour were explored using A.C. impedance spectroscopy. The trend of ionic conductivity increases almost proportionally to the content of magnesium salt and can be related to an increase of amorphous phase at high level of dopant salt. The electrochemical stability of the optimum conducting blend polymer electrolyte is found to be ~3.5 V. The Mg2+ transference number for the sample with optimized conductivity was found to be 0.31.  相似文献   

6.
Solid polymer electrolytes based on methyl cellulose (MC)-potato starch (PS) blend doped with ammonium nitrate (NH4NO3) are prepared by solution cast technique. The interaction between the electrolyte’s materials is proven by Fourier transform infrared (FTIR) analysis. The thermal stability of the electrolytes is obtained from thermogravimetric analysis (TGA). The room temperature conductivity of undoped 60 wt.% MC-40 wt.% PS blend film is identified to be (1.04 ± 0.19) × 10?11 S cm?1. The addition of 30 wt.% NH4NO3 to the polymer blend has optimized the room temperature conductivity to (4.37 ± 0.16) × 10?5 S cm?1. Conductivity trend is verified by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and dielectric analysis. Temperature-dependence of conductivity obeys Arrhenius rule. Conductivity is found to be influenced by the number density (n) and mobility (μ) of ions. From transference number measurements (TNM), ions are found to be the dominant charge carriers.  相似文献   

7.
S. Rajendran  O. Mahendran 《Ionics》2001,7(4-6):463-468
Blend based polymer electrolytes composed of poly (methyl methacrylate) (PMMA), poly(vinylalcohol) (PVA) and LiClO4 are prepared using solvent casting technique. The polymer films are characterized by XRD and FTIR studies to determine the molecular environment for the conducting ions. These polymer films have been investigated in terms of ionic conductivity using the results of impedance studies. The influence of the blend composition on the electrochemical behaviour is also discussed. The highest room temperature conductivity obtained for the film consisting of PMMA, PVA, LiClO4 and DMP is 0.06×10−3 S/cm at 303 K. The PMMA-PVA blend based polymer electrolytes look very desirable and promising for lithium battery applications.  相似文献   

8.
Polymer electrolyte system based on poly(vinyl alcohol) (PVA)-chitosan blend doped with ammonium bromide (NH4Br) has been prepared by solution cast method. Fourier transform infrared (FTIR) spectroscopy analysis confirms the complexation between salt and polymer host. The highest ionic conductivity obtained at room temperature is (7.68?±?1.24)?×?10?4 S cm?1 for the sample comprising of 30 wt% NH4Br. X-ray diffraction (XRD) patterns reveal that PVA-chitosan with 30 wt% NH4Br exhibits the most amorphous structure. Thermogravimetric analysis (TGA) reveals that the electrolytes are stable until ~260 °C. The conductivity variation can also be explained by field emission scanning electron microscopy (FESEM) study. Dielectric properties of the electrolytes follow non-Debye behavior. The conduction mechanism of the highest conducting electrolyte can be represented by the correlated barrier hopping (CBH) model. From linear sweep voltammetry (LSV) result, the highest conducting electrolyte is electrochemically stable at 1.57 V.  相似文献   

9.
Sodium ion conducting solid polymer blend electrolyte thin films have been prepared by using polyvinyl alcohol (PVA)/poly(vinyl pyrrolidone) (PVP) with NaNO3 by solution cast technique. The prepared films were characterized by various methods. The complexation of the salt with the polymer blend was identified by X-ray diffraction (XRD) and Fourier transforms infrared spectroscopy (FTIR), Differential scanning calorimetry was used to analyze the thermal behavior of the samples, and the glass transition temperature is low for the highest conducting polymer material. The scanning electron microscopy gives the surface morphology of the polymer electrolytes. The frequency and temperature dependent of electrical conductivities of the films were studied using impedance analyzer in the frequency range of 1 Hz to 1 MHz. The highest electrical conductivity of 50PVA/50PVP/2 wt% NaNO3 concentration has been found to be 1.25 × 10?5 S cm?1 at room temperature. The electrical permittivity of the polymer films have been studied for various temperatures. The transference number measurements showed that the charge transport is mainly due to ions than electrons. Using this highest conducting polymer electrolyte, an electrochemical cell is fabricated and the parameters of the cells are tabulated.  相似文献   

10.
A polymer blend electrolyte based on polyvinyl alcohol (PVA) and polyacrylonitrile (PAN) was prepared by a simple solvent casting technique in different compositions. The ionic conductivity of polymer blend electrolytes was investigated by varying the PAN content in the PVA matrix. The ionic conductivity of polymer blend electrolyte increased with the increase of PAN content. The effect of lithium salt concentrations was also studied for the polymer blend electrolyte of high ionic conductivity system. A maximum ionic conductivity of 3.76×10−3 S/cm was obtained in 3 M LiClO4 electrolyte solution. The effect of ionic conductivity of polymer blend electrolyte was measured by varying the temperature ranging from 298 to 353 K. Linear sweep voltammetry and DC polarization studies were carried out to find out the stability and lithium transference number of the polymer blend electrolyte. Finally, a prototype cell was assembled with graphite as anode, LiMn2O4 as cathode, and polymer blend electrolyte as the electrolyte as well as separator, which showed good compatibility and electrochemical stability up to 4.7 V.  相似文献   

11.
The proton conducting solid-state polymer electrolyte comprising blend of poly(vinyl alcohol) (PVA) and poly(N-vinylimidazole) (PVIM), ammonium tetrafluoroborate (NH4BF4) as salt, and polyethylene glycol (PEG) (molecular weight 300 and 600) as plasticizer is prepared at various compositions by solution cast technique. The prepared films are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy analysis. The conductivity–temperature plots are found to follow an Arrhenius nature. The conductivity of solid polymer electrolytes is found to depend on salt and plasticizer content and also on the dielectric constant value and molecular weight of the plasticizer. Maximum ionic conductivity values of 2.20?×?10?4 and 1.28?×?10?4?S?cm?1 at 30 °C are obtained for the system (PVA–PVIM)?+?20 wt.% NH4BF4?+?150 wt.% PEG300 and (PVA–PVIM)?+?20 wt.% NH4BF4?+?150 wt.% PEG300, respectively. The blended polymer, complexed with salt and plasticizer, is shown to be a predominantly ionic conductor. The proton transport in the system may be expected to follow Grotthuss-type mechanism.  相似文献   

12.
Solid polymer electrolytes based on potato starch (PS) and graphene oxide (GO) have been developed in this study. Blending GO with PS has improved the ionic conductivity and mechanical properties of the electrolytes. In this work, series of polymer blend consisting of PS and GO as co-host polymer were prepared using solution cast method. The most amorphous PS-GO blend was obtained using 80 wt% of PS and 20 wt% of GO as recorded by X-ray diffraction (XRD). Incorporation of 40 wt% lithium trifluoromethanesulfonate (LiCF3SO3) into the PS-GO blend increases the conductivity to (1.48 ± 0.35) × 10?5 S cm?1. Further enhancement of conductivity was made using 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]). The highest conductivity at room temperature is obtained for the electrolyte containing 30 wt% of [Bmim][Cl] with conductivity value of (4.8?0 ± 0.69) × 10?4 S cm?1. Analysis of the Fourier transform infrared spectroscopy (FTIR) spectra confirmed the interaction between LiCF3SO3, [Bmim][Cl], and PS-GO blend. The variation of the dielectric constant and modulus studies versus frequency indicates that system of PS-GO-LiCF3SO3-[Bmim][Cl] obeys non-Debye behavior.  相似文献   

13.
The influence of tetrabutylammonium iodide on the polyvinylidene fluoride-poly(methyl methacrylate)-ethylene carbonate (PVDF-PMMA-EC)-I2 polymer blend electrolytes was investigated and optimized for use in a dye-sensitized solar cell. The different weight ratios (50, 60, 70, and 80 %) of tetrabutylammonium iodide (TBAI)-added PVDF-PMMA-EC-I2 polymer electrolytes were prepared. The prepared solid polymer blend electrolytes were characterized by using various techniques such as Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). The FT-IR spectra revealed the interaction among all composition of polymer electrolytes. The influence of TBAI salt on the ionic conductivity of polymer electrolytes was studied using electrochemical impedance spectroscopy. The polymer electrolyte containing 60 % of TBAI in PVDF-PMMA-EC-I2 showed the highest room temperature conductivity of 5.10?×?10?3 S cm?1. The fabricated DSSC using PVDF-PMMA-EC-I2 polymer electrolytes with 60 % of TBAI showed the best performance with a short-circuit current density of 8.0 mA cm?2, open-circuit voltage of 0.66 V, fill factor of 0.65, and the overall power conversion efficiency of 3.45 % under an illumination of 100 mW cm?2. Hence, the weight content of organic iodide salt in polymer electrolytes influences the overall performance of dye-sensitized solar cells.  相似文献   

14.
A novel group of polymer blend electrolytes based on the mixture of poly(vinyl acetate) (PVAc), poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), and the lithium salt (LiClO4) are prepared by solvent casting technique. Ionic conductivity of the polymer blend electrolytes has been investigated by varying the PVAc and PVdF-HFP content in the polymer matrix. The maximum ionic conductivity has been obtained as 0.527 × 10−4 Scm−1 at 303 K for PVAc/PVdF-HFP ((25/75) wt.%)/LiClO4 (8 wt.%). The complex formations ascertained from XRD and FTIR spectroscopic techniques and the thermal behavior of the prepared samples has been performed by DSC analysis. The surface morphology and the surface roughness are studied using SEM and AFM scanning techniques respectively.  相似文献   

15.
A solid polymer blend electrolyte is prepared using poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) polymers with different molecular weight percentage (wt%) of ammonium thiocyanate (NH4SCN) by solution casting technique with tetrahydrofuran (THF) as a solvent. The structural, morphological, vibrational, thermal and electrical properties of the prepared polymer blend electrolytes have been studied. The incorporation of NH4SCN into the polymeric matrix causes decrease in the degree of crystallinity of the samples. The complex formation between the polymer and salt has been confirmed by FTIR technique. The increase in T g with increase in salt concentration has been investigated. The maximum conductivity of 3.684?×?10?3 S cm?1 has been observed for the composition of 70PVAc/30PMMA/30 wt% of NH4SCN at 303 K. This value of ionic conductivity is five orders of magnitude greater than that of 70PVAc/30PMMA polymer membrane. Dielectric and transport studies have been done. The highest conducting polymer electrolyte is used to fabricate proton battery with the configuration Zn/ZnSO4·7H2O (anode) ||polymer electrolyte||PbO2/V2O5 (cathode). The open circuit voltage of the fabricated battery is 1.83 V, and its performance has been studied.  相似文献   

16.
Poly(vinylidene fluoride)-based polymer electrolytes using ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsufonyl)imide as the plasticizer were prepared by solution casting method. The effects of the solvent evaporation temperature (SET) and ionic liquid content (ILC) on the properties and structures of the polymer electrolytes were investigated by characterization of scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry, as well as mechanical and ionic conductivity test. It was confirmed that both SET and ILC had significant influence on the morphology, degree of crystallinity, mechanical properties, and ionic conductivity of the prepared polymer electrolytes. With ILC of 40 %, an excellent polymer electrolyte can be obtained at SET of 60 °C, which exhibited ionic conductivity up to ca. 10?4 S/cm at room temperature, accompanied by excellent tensile strength of 22.8 MPa and elongation at break of 540 %.  相似文献   

17.
Proton-conducting solid polymer blend electrolytes based on methylcellulose-polyvinyl alcohol:ammonium nitrate (MC-PVA:NH4NO3) were prepared by the solution cast technique. The structural and electrical properties of the samples were examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and electrical impedance (EI) spectroscopy. The shifting and change in the intensity of FTIR bands of the electrolyte samples confirm the complex formation between the MC-PVA polymer blend and the NH4NO3 added salt. The observed broadening in the XRD pattern of the doped samples reveals the increase of the amorphous fraction of polymer electrolyte samples. The increase in electrical conductivity of polymer electrolyte samples with increasing salt concentration attributed to the formation of charge-transfer complexes, and to increase in the amorphous domains. A maximum ionic conductivity of about 7.39 × 10?5 S cm?1 was achieved at room temperature for the sample incorporating 20 wt% of NH4NO3. The DC conductivity of the present polymer system exhibits Arrhenius-type dependence with temperature. The decrease in the values of activation energies with increasing salt concentration indicates the ease mobility of ions. The decrease in dielectric constant with increasing frequency was observed at all temperatures. Optical properties such as absorption edge, optical band gap, and tail of localized state were estimated for polymer blend and their electrolyte films. It was found that the optical band gap values shifted towards lower photon energy from 6.06 to 4.75 eV by altering the NH4NO3 salt content.  相似文献   

18.
In the present work, a series of single-ion conducting composite polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB)) and poly(polyethylene glycol methacrylate) (PPEGMA) were produced. PEGMA was polymerized into PPEGMA, and the Li(PVAOB) was prepared from poly (vinyl alcohol) (PVA), oxalic acid, and boric acid. Li(PVAOB) was blended with PPEGMA at different stoichiometric ratios to obtain a single-ion conducting system. All the electrolytes were characterized by Fourier transformation infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM) techniques. These results verified the interaction between host and guest polymers, sufficient thermal stability within the measured conductivity domain, and the homogeneity of the composite electrolytes. The effect of PPEGMA onto the ionic conductivity was investigated using impedance spectroscopy. The Li(PVAOB)-60PPEGMA is the optimum content, and this sample has a maximum ionic conductivity of 3 × 10?4 S/cm at 100 °C which is approximately five orders of magnitude higher than neat Li(PVAOB). Activation energy (E a ) of ionic transport decreased from 11.9 to 0.27 kJ/mol, suggesting a much faster ionic mobility for higher PPEGMA-containing samples.  相似文献   

19.
Dextran-chitosan blend added with ammonium thiocyanate (NH4SCN)-based solid polymer electrolytes are prepared by solution cast method. The interaction between the components of the electrolyte is verified by Fourier transform infrared (FTIR) analysis. The blend of 40 wt% dextran-60 wt% chitosan is found to be the most amorphous ratio. The room temperature conductivity of undoped 40 wt% dextran-60 wt% chitosan blend film is identified to be (3.84?±?0.97)?×?10?10 S cm?1. The inclusion of 40 wt.% NH4SCN to the polymer blend has optimized the room temperature conductivity up (1.28?±?0.43)?×?10?4 S cm?1. Result from X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis shows that the electrolyte with the highest conductivity value has the lowest degree of crystallinity (χ c) and the glass transition temperature (T g), respectively. Temperature-dependence of conductivity follows Arrhenius theory. From transport analysis, the conductivity is noticed to be influenced by the mobility (μ) and number density (n) of ions. Conductivity trend is further verified by field emission scanning electron microscopy (FESEM) and dielectric results.  相似文献   

20.
The proton-conducting polymer electrolytes based on poly (N-vinylpyrrolidone) (PVP), doped with ammonium chloride (NH4Cl) in different molar ratios, have been prepared by solution-casting technique using distilled water as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the polymer with the salt. A shift in glass transition temperature (T g) of the PVP/NH4Cl electrolytes has been observed from the DSC thermograms which indicates the interaction between the polymer and the salt. From the AC impedance spectroscopic analysis, the ionic conductivity of 15?mol% NH4Cl-doped PVP polymer complex has been found to be maximum of the order of 2.51?×?10?5?Scm?1 at room temperature. The dependence of T g and conductivity upon salt concentration has been discussed. The linear variation of the proton conductivity of the polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy calculated from the Arrhenius plot for all compositions of PVP doped with NH4Cl has been found to vary from 0.49 to 0.92?eV. The dielectric loss curves for the sample 85?mol% PVP:15?mol% NH4Cl reveal the low-frequency ?? relaxation peak pronounced at high temperature, and it may be caused by side group dipoles. The relaxation parameters of the electrolytes have been obtained by the study of Tan?? as a function of frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号