共查询到20条相似文献,搜索用时 15 毫秒
1.
Abdul Munam Mario Gauthier 《Journal of polymer science. Part A, Polymer chemistry》2008,46(17):5742-5751
A method was developed for the large (100 g) scale synthesis of arborescent polystyrenes using acetyl coupling sites. Successive generations of dendritic graft polymers were obtained from cycles of polystyrene substrate acetylation with acetyl chloride and coupling in the presence of LiCl with “living” polystyryllithium chains capped with 2‐vinylpyridine units. The grafting yield for the synthesis of a generation zero (G0 or comb‐branched) arborescent polystyrene under the conditions previously reported for the 10 g scale reactions decreased from 95 to 75% when scaled up to 100 g. The lowered yield was linked to side chain dimerization and deactivation of the macroanions. The modified 100 g scale procedure, using end‐capping of the polystyryllithium with 1,1‐diphenylethylene and the addition of 3–6 equivalents per living end of 2‐vinylpyridine as a dilute solution, eliminated side chain dimerization and provided grafting yields of up to 95%. The large‐scale procedure developed was applied to the synthesis of arborescent polystyrenes of generations up to G2 with low polydispersity indices (Mw/Mn ≤ 1.04) and molecular weights increasing in an approximately geometric fashion for each cycle. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5742–5751, 2008 相似文献
2.
Mario Gauthier Toufic Aridi 《Journal of polymer science. Part A, Polymer chemistry》2019,57(16):1730-1740
A method was developed for the synthesis of arborescent polystyrene by “click” coupling. Acetylene functionalities were introduced on linear polystyrene (Mn = 5300 g/mol, Mw/Mn = 1.05) by acetylation and reaction with potassium hydroxide, 18‐crown‐6 and propargyl bromide in toluene. Polymerization of styrene with 6‐tert‐butyldimethylsiloxyhexyllithium yielded polystyrene (Mn = 5200 g/mol, Mw/Mn = 1.09) with a protected hydroxyl chain end. Deprotection, followed by conversions to tosyl and azide functionalities, provided the side chain material. Coupling with CuBr and N,N,N′,N″,N″‐pentamethyldiethylenetriamine proceeded in up to 94% yield. Repetition of the grafting cycles led to well‐defined (Mw/Mn ≤ 1.1) polymers of generations G1 and G2 in 84% and 60% yield, respectively, with Mn and branching functionalities reaching 2.8 × 106 g/mol and 460, respectively, for the G2 polymer. Coupling longer (Mn = 45,000 g/mol) side chains with acetylene‐functionalized substrates was also examined. For a linear substrate, a G0 polymer with Mn = 4.6 × 105 g/mol and Mw/Mn = 1.10 was obtained in 87% yield; coupling with the G0 (Mn = 52,000 g/mol) substrate produced a G1 polymer (Mn = 1.4×106 g/mol, Mw/Mn = 1.38) in 28% yield. The complementary approach using azide‐functionalized substrates and acetylene‐terminated side chains was also investigated, but proceeded in lower yield. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1730–1740 相似文献
3.
R. Andrew Kee Mario Gauthier 《Journal of polymer science. Part A, Polymer chemistry》2008,46(7):2335-2346
A technique is described for the preparation of arborescent graft copolymers containing poly(tert‐butyl methacrylate) (PtBMA) segments. For this purpose, tert‐butyl methacrylate is first polymerized with 1,1‐diphenyl‐2‐methylpentyllithium in tetrahydrofuran. The graft copolymers are obtained by addition of a solution of a bromomethylated polystyrene substrate to the living PtBMA macroanion solution. Copolymers incorporating either short (Mw ≈ 5000) or long (Mw ≈ 30,000) PtBMA side chains were prepared by grafting onto linear, comb‐branched (G0), G1, and G2 bromomethylated arborescent polystyrenes. Branching functionalities ranging from 9 to 4500 and molecular weights ranging from 8.8 × 104 to 6.3 × 107 were obtained for the copolymers, while maintaining a low apparent polydispersity index (Mw/Mn ≈ 1.14–1.25). Arborescent polystyrene‐graft‐poly(methacrylic acid) (PMAA) copolymers were obtained by hydrolysis of the tert‐butyl methacrylate units. Dynamic light scattering measurements showed that the arborescent PMAA copolymers are more expanded than their linear PMAA analogues when neutralized with NaOH. This effect is attributed to the higher charge density in the branched arborescent copolymer structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2335–2346, 2008 相似文献
4.
Jason Dockendorff Mario Gauthier 《Journal of polymer science. Part A, Polymer chemistry》2014,52(8):1075-1085
Arborescent copolymers with a core‐shell‐corona (CSC) architecture, incorporating a polystyrene (PS) core, an inner shell of poly(2‐vinylpyridine), P2VP, and a corona of PS chains, were obtained by anionic polymerization and grafting. Living PS‐b‐P2VP‐Li block copolymers serving as side chains were obtained by capping polystyryllithium with 1,1‐diphenylethylene before adding 2‐vinylpyridine. A linear or arborescent (generation G0 – G3) PS substrate, randomly functionalized with acetyl or chloromethyl coupling sites, was then added to the PS‐b‐P2VP‐Li solution for the grafting reaction. The grafting yield and the coupling efficiency observed in the synthesis of the arborescent PS‐g‐(P2VP‐b‐PS) copolymers were much lower than for analogous coupling reactions previously used to synthesize arborescent PS homopolymers and PS‐g‐P2VP copolymers from the same types of coupling sites. It was determined from static and dynamic light scattering analysis that PS‐b‐P2VP formed aggregates in THF, the solvent used for the synthesis. This presumably hindered coupling of the macroanions with the substrate, and explains the low grafting yield and coupling efficiency observed in these reactions. Purification of the crude products was also problematic due to the amphipolar character of the CSC copolymers and the block copolymer contaminant. A new fractionation method by cloud‐point centrifugation was developed to purify copolymers of generations G1 and above. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1075–1085 相似文献
5.
Judit E. Puskas Yongmoon Kwon Prince Antony Anil K. Bhowmick 《Journal of polymer science. Part A, Polymer chemistry》2005,43(9):1811-1826
The synthesis of novel arborescent (arb; randomly branched, “tree‐like,” and often called “hyperbranched”) block copolymers comprised of rubbery polyisobutylene (PIB) and glassy polystyrene (PSt) blocks (arb‐PIB‐b‐PSt) is described. The syntheses were accomplished by the use of arb‐PIB macroinitiators (prepared by the use of 4‐(2‐methoxyisopropyl) styrene inimer) in conjunction with titanium tetrachloride (TiCl4). The effect of reaction conditions on blocking of St from arb‐PIB was investigated. Purified block copolymers were characterized by 1H NMR spectroscopy and Size Exclusion Chromatography (SEC). arb‐PIB‐b‐PSt with 11.7–33.8 wt % PSt and Mn = 468,800–652,900 g/mol displayed thermoplastic elastomeric properties with 3.6–8.7 MPa tensile strength and 950–1830% elongation. Samples with 26.8–33.8 wt % PSt were further characterized by Atomic Force Microscopy (AFM), which showed phase‐separated mixed spherical/cylindrical/lamellar PSt phases irregularly distributed within the continuous PIB phase. Dynamic Mechanical Thermal Analysis (DMTA) and solvent swelling of arb‐PIB‐b‐PSt revealed unique characteristics, in comparison with a semicommercial PSt‐b‐PIB‐b‐PSt block copolymer. The number of aromatic branching points of the arb‐PIB macroinitiator, determined by selective destruction of the linking sites, agreed well with that calculated from equilibrium swelling data of arb‐PIB‐b‐PSt. This method for the quantitative determination of branching sites might be generally applicable for arborescent polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1811–1826, 2005 相似文献
6.
Marinos Pitsikalis Stella Sioula Stergios Pispas Nikos Hadjichristidis Daniel C. Cook Jianbo Li Jimmy W. Mays 《Journal of polymer science. Part A, Polymer chemistry》1999,37(23):4337-4350
Anionic polymerization techniques utilizing 1,2,4,5-tetra(bromomethyl)- benzene as the linking agent were employed for the synthesis of four-arm star polymers with poly(tert-butyl methacrylate) (PtBuMA), poly(methyl methacrylate), poly(tert-butylacrylate) (PtBuA), or poly(2-vinylpyridine) (P2VP) branches. This work was extended through the “grafting onto” method, in combination with anionic polymerization techniques, to synthesize graft copolymers consisting of polystyrene backbones and PtBuA, PtBuMA, or P2VP branches. Postpolymerization reactions were performed to produce graft copolymers with polyelectrolyte branches. Crosslinking reactions were observed in some of the graft materials several months after their preparation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4337–4350, 1999 相似文献
7.
Synthesis of ABCD‐type miktoarm star copolymers and transformation into zwitterionic star copolymers
Xiaojun Wang Junpo He Yuliang Yang 《Journal of polymer science. Part A, Polymer chemistry》2007,45(21):4818-4828
ABCD‐type 4‐miktoarm star copolymers of styrene (St), α‐methylstyrene (αMSt), tert‐butyl methacrylate (tBuMA), and 4‐vinylpyridine (4VP) were synthesized via anionic polymerization using 1,3‐bis(1‐phenylvinyl)benzene (m‐DDPE) as the linking molecule. The synthetic route was rationally designed with respect to the reactivity of individual propagating anion towards the double bond of m‐DDPE. Thus the synthesis includes several consecutive key reactions, for example, the monoaddition of polystyryllithium towards m‐DDPE, the polymerization of tBuMA initiated by the resulting monoadduct to produce a diblock macromonomer, the coupling of the macromonomer with poly(α‐methylstyryl)lithium to form a 3‐arm star anion, and the polymerization of 4‐vinylpyridine initiated by the star anion. These reactions were conducted either in a one‐pot process, in which the diblock macromonomer was in situ coupled with poly(α‐methylstyryl)lithium, or in a batch polymerization process, in which the same diblock macromonomer was separated. The final product was hydrolyzed to produce a zwitterionic miktoarm star copolymer, which was soluble at lower pH but insoluble in neutral and basic solution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4818–4828, 2007 相似文献
8.
Mario Gauthier 《Journal of polymer science. Part A, Polymer chemistry》2007,45(17):3803-3810
Arborescent polymers are characterized by a dendritic, multilevel branched architecture derived from successive grafting reactions. In spite of their much larger size, these materials display properties analogous to dendrimers and hyperbranched polymers, the two other dendritic polymer families. The distinguishing features of arborescent polymers are their assembly from polymeric building blocks of uniform size and their very high molecular weights attained in few synthetic steps. This article offers an overview of the historical aspects of the development of dendrigraft polymers, starting from our initial efforts on the synthesis of arborescent polystyrenes. Major subsequent developments in the synthetic techniques from our and other research groups allowing the synthesis of dendrigraft copolymers, tailoring of the structural characteristics of the molecules, and further simplifications to their synthesis are also reviewed, with emphasis over the broad range of architectures attainable in these systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3803–3810, 2007 相似文献
9.
Jieming Li Mario Gauthier 《Journal of polymer science. Part A, Polymer chemistry》2000,38(20):3711-3721
The synthesis of ω‐ and α,ω‐telechelics with sulfonate end groups through the sulfoalkylation of homopolymers and block copolymers of n‐butyl methacrylate and t‐butyl methacrylate with 1,3‐propane sultone is described. The polymerizations are initiated in tetrahydrofuran at −78 °C with either 1,1‐diphenyl‐3‐methylpentyllithium or dilithium 1,1,4,4‐tetraphenylbutane to obtain monofunctional or difunctional polymethacrylate anions, respectively. Narrow molecular weight distributions are obtained for the homopolymers and copolymers in the presence of LiCl in a 10/1 ratio relative to the initiator. The direct reaction of the poly(n‐butyl methacrylate) anions with the sultone results in low functionalization levels: f = 0.24–0.29 for the monofunctional anions and f = 0.32–0.35 for the difunctional anions. The reaction of the poly(t‐butyl methacrylate) anions or end‐capping of the poly(n‐butyl methacrylate) anions with t‐butyl methacrylate units before sulfoalkylation yields telechelics with f = 0.81–1.0 for the monofunctional anions and f = 1.74–1.94 for the difunctional anions. The telechelic polymers, purified by ultrafiltration, have been characterized by size exclusion chromatography, Fourier transform infrared, and 1H NMR spectroscopy. The yield of the sulfoalkylation reactions, determined by colorimetric analysis of a complex formed with methylene blue, is in good agreement with the results obtained by nonaqueous titration of the acidified telechelics. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3711–3721, 2000 相似文献
10.
Greg Whitton Mario Gauthier 《Journal of polymer science. Part A, Polymer chemistry》2016,54(9):1197-1209
Amphiphilic copolymers were obtained by grafting arborescent poly(γ‐benzyl l ‐glutamate) (PBG) cores of generations G1–G3 with polyglycidol, poly(ethylene oxide) (PEO), or poly(l ‐glutamic acid) (PGA) chain segments. The PBG substrates were synthesized by two methods: (1) subjecting PBG samples with a dispersity ? = Mw/Mn < 1.1 to partial acidolysis of the benzyl ester groups, to produce randomly distributed carboxylic acid functionalities, and (2) using PBG chains containing a glutamic acid di‐tert‐butyl ester initiator fragment in the last grafting cycle of the PBG core synthesis, and selective acidolysis of the tert‐butyl ester groups to obtain substrates with carboxylic acid termini. Linear polymers with ? < 1.20 and a primary amine terminus were also synthesized to serve as hydrophilic shell materials: Polyglycidol and PEO by anionic polymerization, and PGA by N‐carboxyanhydride ring‐opening polymerization. These polymers, combined with the two different PGB substrate types, allowed the evaluation of the usefulness of random versus chain‐end grafting in producing arborescent copolymers useful as unimolecular micelles in organic and aqueous media. Size exclusion chromatography served to determine the grafting yield, molar mass, dispersity, and branching functionality of the copolymers. Dynamic light scattering measurements provided information on their aggregation behavior in aqueous environments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1197–1209 相似文献
11.
Hyung‐Jae Lee Kwanyoung Lee Namsun Choi 《Journal of polymer science. Part A, Polymer chemistry》2005,43(4):870-878
Star polystyrenes were synthesized from polystyryllithium with an incremental procedure in which equally divided portions of divinylbenzene (DVB) were added periodically. When the addition of DVB was repeated, the content of the unreacted polystyryllithium dramatically decreased, and complete conversion was readily achieved. In the conventional linking reaction, however, in which all the required amounts of DVB were added at once, there was an incomplete conversion of the arm polymer. The arm number of star polymers also continuously increased upon the subsequent addition of DVB. The incremental‐addition method effectively synthesized star polystyrene, minimizing uncoupled polystyrene and reproducibly controlling the arm number of star polystyrene without the formation of gel polymers. The intrinsic viscosity of star polystyrene was measured to determine the highly branched structure of star polystyrene prepared by incremental or one‐shot addition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 870–878, 2005 相似文献
12.
Patric Jannasch Bengt Wessln 《Journal of polymer science. Part A, Polymer chemistry》1993,31(6):1519-1529
Graft copolymers containing poly(ethylene oxide) side chains on a polystyrene backbone have been synthesized. Styrene copolymers synthesized by free radical mechanism and containing between 5 and 15 mol % acrylamide or methacrylamide were used as backbones. The amide groups in the copolymers were ionized by using potassium tert-butoxide or potassium naphthalene, and grafting was achieved by utilizing the amide anions as initiator sites for the polymerization of ethylene oxide in 2-ethoxyethyl ether at 65°C. The graft copolymers were characterized with respect to molecular weight and composition using elemental analysis, NMR, gel permeation chromatography, IR, and viscosity measurements. The size of the side chains were between 600 and 2000 g/mol. GPC results from a hydrolyzed graft copolymer sample suggest a narrow size distribution for the poly(ethylene oxide) grafts. Solution properties of the graft copolymers were investigated in different toluene/methanol mixtures. The intrinsic viscosities of the graft copolymers were found to depend primarily on the poly(ethylene oxide) content rather than the graft density or the poly(ethylene oxide) chain length. © 1993 John Wiley & Sons, Inc. 相似文献
13.
14.
Greg Whitton Mario Gauthier 《Journal of polymer science. Part A, Polymer chemistry》2013,51(24):5270-5279
The synthesis of arborescent polymers with poly(γ‐benzyl L‐glutamate) (PBG) side chains was achieved through successive grafting reactions. The linear PBG building blocks were produced by the ring‐opening polymerization of γ‐benzyl L‐glutamic acid N‐carboxyanhydride initiated with n‐hexylamine. The polymerization conditions were optimized to minimize the loss of amino chain termini in the reaction. Acidolysis of a fraction of the benzyl groups on a linear PBG substrate and coupling with linear PBG using a carbodiimide/hydroxybenzotriazole promoter system yielded a comb‐branched or generation zero (G0) arborescent PBG. Further partial deprotection and grafting cycles led to arborescent PBG of generations G1 to G3. The solvent used in the coupling reaction had a dramatic influence on the yield of graft polymers of generations G1 and above, dimethylsulfoxide being preferable to N,N‐dimethylformamide. This grafting onto scheme yielded well‐defined (Mw/Mn ≤ 1.06), high molecular weight arborescent PBG in a few reaction cycles, with number‐average molecular weights and branching functionalities reaching over 106 and 290, respectively, for the G3 polymer. α‐Helix to coiled conformation transitions were observed from N,N‐dimethylformamide to dimethyl sulfoxide solutions, even for the highly branched polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5270–5279 相似文献
15.
Georgia Zorba Marinos Pitsikalis Nikos Hadjichristidis 《Journal of polymer science. Part A, Polymer chemistry》2007,45(12):2387-2399
Anionic polymerization high-vacuum techniques and appropriate multifunctional initiators/additives were employed for the synthesis of novel star structures of poly(n-hexyl isocyanate) (PHIC). A new trifunctional initiator prepared by the reaction of tris(4-isocyanatophenyl)methane with benzyl sodium was used for the synthesis of three-arm star PHIC. Divinyl benzene and the core-first or the arm-first/core-first (in-out) approach were utilized for the synthesis of multiarm star homopolymers, (PHIC)n, star-block copolymers, (PHIC-b-PI)n, and miktoarm star copolymers, (PS)n(PHIC)n, where PS is polystyrene. The molecular characteristics obtained by size-exclusion chromatography, equipped with refractive index and two-angle light scattering detectors, nuclear magnetic resonance, spectroscopy, and dilute solution viscometry showed that well-defined structures were synthesized in this study. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2387–2399, 2007 相似文献
16.
Coil-helix and sheet-helix block copolymers via macroinitiation from telechelic ROMP polymers 下载免费PDF全文
Elizabeth Elacqua Anna Croom Diane S. Lye Marcus Weck 《Journal of polymer science. Part A, Polymer chemistry》2017,55(18):2991-2998
Coil-helix and sheet-helix block copolymers are synthesized by combining the ring-opening metathesis polymerization (ROMP) of norbornene or paracyclophanediene with the anionic polymerization of phenyl isocyanide. Key to the design is the use of an μ-ethynyl palladium (II) functionalized chain-transfer agent (CTA) that can be exploited in a stepwise manner for the termination of ROMP and the initiation of the anionic polymerization. Both the coil- and sheet-macroinitiators, and the ensuing covalent block copolymers, are analyzed using 1H NMR spectroscopy and gel-permeation chromatography. In all cases, the Pd-end group is maintained and all polymers demonstrate a monomodal distribution with dispersities (Đ) of 1.1–1.4. The resulting helix-coil and helix-sheet block copolymers formed by the macroinitiation route still demonstrate their intrinsic properties (fluorescence, preferential helix-sense). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2991–2998 相似文献
17.
Daniel P. Sweat Xiang Yu Myungwoong Kim Padma Gopalan 《Journal of polymer science. Part A, Polymer chemistry》2014,52(10):1458-1468
Living anionic polymerization of an acetal protected 4‐hydroxystyrene monomer, (4‐(2‐tetrahydropyranyloxy)styrene) (OTHPSt), and the chain extension of the poly(OTHPSt) anion with a variety of monomers including styrene, 4‐tert‐butylstyrene, methacryloyl polyhedral oligomeric silsesquioxane (MAPOSS) and hexamethylcyclotrisiloxane is demonstrated. The P(OTHPSt) homopolymer has a glass transition temperature well above room temperature, which facilitates handling and purification of the protected poly(4‐hydroxystyrene) (PHS). The resulting diblock copolymers have narrow dispersities <1.05. Chemoselective mild deprotection conditions for the P(OTHPSt) block were identified to prevent simultaneous degradation of the MAPOSS or dimethylsiloxane (DMS) block, thus allowing for the first reported synthesis of P(HS‐b‐DMS) and P(HS‐b‐MAPOSS). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1458–1468 相似文献
18.
N. Mougin P. Rempp Y. Gnanou 《Journal of polymer science. Part A, Polymer chemistry》1993,31(5):1253-1260
The synthesis of copolymers constituted of a central polydimethylsiloxane (PDMS) block flanked by two polyamide (PA) sequences is described. α, ω-diacyllactam PDMS, when used as macroinitiator of lactam polymerization, gives rise to the expected triblock copolymer. Likewise, PDMS-g-PA graft copolymers are obtained from acyllactam containing polysiloxanes. NaAlH2(OCH2CH2OMe)2 turns out to be the best suited activating agent for the polymerization of ?-caprolactam, in the experimental conditions required for the synthesis of polysiloxane–polyamide copolymers. The nucleophilic species formed by reaction of NaAlH2(OCH2CH2OMe)2 with ?-caprolactam—2-[bis(methoxyethoxy) aluminumoxy]-1-azacycloheptane sodium—is indeed nucleophilic enough to bring about the growth of PA chains and mild enough to stay inert towards PDMS. © 1993 John Wiley & Sons, Inc. 相似文献
19.
Timothy R. Totsch Victoria L. Stanford Oleksander Klep Mary K. Burdette Benjamin Grant Stephen H. Foulger Gary M. Gray 《Journal of polymer science. Part A, Polymer chemistry》2020,58(13):1825-1842
Linear polyphosphonates with the generic formula –[P(Ph)(X)OR′O]n– (X = S or Se) have been synthesized by polycondensations of P(Ph)(NEt2)2 and a diol (HOR′OH = 1,4-cyclohexanedimethanol, 1,4-benzenedimethanol, tetraethylene glycol, or 1,12-dodecanediol) followed by reaction with a chalcogen. Random copolymers have been synthesized by polycondensations of P(Ph)(NEt2)2 and mixture of two of the diols in a 2:1:1 mol ratio followed by reaction with a chalcogen. Block copolymers with the generic formula –[P(Ph)(X)OR′O](x + 2) –[P(Ph)(X)OR′O](x + 3)– (X = S or Se) have been synthesized by the polycondensations of Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2 oligomers with HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers followed by reaction with a chalcogen. The Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2 oligomers are prepared by the reaction of an excess of P(Ph)(NEt2)2 with a diol while the HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers are prepared by the reaction of P(Ph)(NEt2)2 with an excess of the diol. In each case the excess, x is the same and determines the average block sizes. All of the polymers were characterized using 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, TGA, DSC, and SEC. 31P{1H} NMR spectroscopy demonstrates that the random and block copolymers have the expected arrangements of monomers and, in the case of block copolymers, verifies the block sizes. All polymers are thermally stable up to ~300°C, and the arrangements of monomers in the copolymers (block vs. random) affect their degradation temperatures and Tg profiles. The polymers have weight average MWs of up to 3.8 × 104 Da. 相似文献