首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The radical ring‐opening polymerization (RROP) behavior of the following monomers is reviewed, and the possibility for application to functional materials is described: cyclic disulfide, bicyclobutane, vinylcyclopropane, vinylcyclobutane, vinyloxirane, vinylthiirane, 4‐methylene‐1,3‐dioxolane, cyclic ketene acetal, cyclic arylsulfide, cyclic α‐oxyacrylate, benzocyclobutene, o‐xylylene dimer, exo‐methylene‐substituted spiro orthocarbonate, exo‐methylene‐substituted spiro orthoester, and vinylcyclopropanone cyclic acetal. RROP is a promising candidate for producing a wide variety of environmentally friendly functional polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 265–276, 2001  相似文献   

2.
This article describes the formation and characterization of self‐assembled nanoparticles of controlled sizes based on amphiphilic block copolymers synthesized by ring‐opening metathesis polymerization. We synthesized a novel hydrophobic derivative of norbornene; this monomer could be polymerized using Grubbs' catalyst [Cl2Ru(CHPh)(PCy3)2] forming polymers of controlled molecular weight. We synthesized amphiphilic block copolymers of controlled composition and showed that they assemble into nanoparticles of controlled size. The nanoparticles were characterized using dynamic light scattering and transmission electron microscopy. Tuning the composition of the block copolymer enables the tuning of the diameters of the nanoparticles in the 30‐ to 80‐nm range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3352–3359, 2004  相似文献   

3.
The tendencies of ring‐opening processes in radical ring‐opening polymerizations were evaluated by AM1 and PM3 semi‐empirical calculations and 6‐31G*‐level calculations based on the density functional theory (DFT) B3LYP models. Sixteen cyclic monomers bearing vinyl or exomethylene groups were categorized into ring‐opening and no‐ring‐opening monomers by the evaluation of the differences of the internal energies and the lengths of the cleaving bonds between the ground states of the initial radicals and the activated states in the ring‐opening processes. Although the semi‐empirical calculations not parameterized to radical reactions resulted in the moderate categorization of the ring‐opening monomers, the DFT calculation clearly distinguished the ring‐opening and no‐ring‐opening monomers. The ring‐opening tendencies were also evaluated with the changes in the internal energies throughout the ring‐opening processes, but this method could not group the ring‐opening and no‐ring‐opening monomers clearly. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2827–2834, 2007  相似文献   

4.
The ring‐opening polymerization (ROP) of p‐dioxanone (PDO) under microwave irradiation with triethylaluminum (AlEt3) or tin powder as catalyst was investigated. When the ROP of PDO was catalyzed by AlEt3, the viscosity‐average molecular weight (Mv) of poly(p‐dioxanone) (PPDO) reached 317,000 g mol?1 only in 30 min, and the yield of PPDO achieved 96.0% at 80 °C. Tin powder was successfully used as catalyst for synthesizing PPDO by microwave heating, and PPDO with Mv of 106,000 g mol?1 was obtained at 100 °C in 210 min. Microwave heating accelerated the ROP of PDO catalyzed by AlEt3 or tin powder, compared with the conventional heating method. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3207–3213, 2008  相似文献   

5.
Shell‐functionalized polymeric nanoparticle was prepared through the method of polymerization‐induced self‐assembly of block copolymers [poly(2,3‐bis(2‐bromoisobutyryloxymethyl)‐5‐norbornene)‐block‐poly(7‐oxanorborn‐5‐ene‐exo‐exo‐2,3‐dicarboxylic acid dimethyl ester), PBNBE‐b‐PONBDM] via one‐pot ring‐opening metathesis polymerization of 2,3‐bis(2‐bromoisobutyryloxymethyl)‐5‐norbornene (BNBE) and 7‐oxanorborn‐5‐ene‐exo‐exo‐2,3‐dicarboxylic acid dimethyl ester (ONBDM) in a selective solvent. The compositions and the molecular weights of the copolymers were estimated by 1H‐NMR and gel permeation chromatography. The micelles were characterized by dynamic light scattering, transmission electron micrograph, and atomic force microscopy. The results indicated that the spherical micelles constructed with bromine‐bearing PBNBE shell and PONBDM core were stable and reproducible in toluene. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
This work deals with the cationic ring‐opening polymerization of cyclic thiocarbonates with a norbornene or norbornane moiety, that is, 5,5‐(bicyclo[2.2.1]hept‐2‐ene‐5,5‐ylidene)‐1,3‐dioxane‐2‐thione ( TC1 ) or 5,5‐(bicyclo[2.2.1]heptane‐5,5‐ylidene)‐1,3‐dioxane‐2‐thione ( TC2 ), respectively. The reaction of TC1 initiated by trifluoromethanesulfonic acid (TfOH), methyl trifluoromethanesulfonate (TfOMe), boron trifluoride etherate (BF3OEt2), or triethyloxonium tetrafluoroborate (Et3OBF4) afforded unidentified products; however, TC1 underwent cationic ring‐opening polymerization with methyl iodide as an initiator to afford polythiocarbonate because the propagating end was stabilized by the covalent‐bonding property. The polymerization of TC2 initiated by TfOH, TfOMe, BF3OEt2, or Et3OBF4 afforded polythiocarbonate with good solubility in common organic solvents and a narrow molecular weight distribution because of the absence of a double‐bond moiety. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1698–1705, 2002  相似文献   

7.
2,5‐Diketopiperazines (DKPs) are the smallest cyclic dipeptides found in nature with various attractive properties. In this study, we have demonstrated the successful modification of proline‐based DKPs using anionic ring‐opening polymerization (AROP) as a direct approach. Four different proline‐based DKPs with various side chains and increasing steric hindrance were used as initiating species for the polymerization of 1,2‐epoxybutane or ethoxyethyl glycidyl ether in the presence of t‐BuP4 phosphazene base. The addition of a Lewis acid, tri‐isobutyl aluminum, to the reaction mixture strongly decreased the occurrence of side reactions. Impact of the DKP side‐chain functionalities on molar mass control and dispersity was successfully evidenced. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1008–1016  相似文献   

8.
In an attempt to introduce monomer sequence control in a growing polynorbornene via ring‐opening metathesis polymerization, we employ dioxepins to efficiently determine the location of the monomers on the macromolecule backbone. Owing to the acid‐labile acetal group, dioxepins allow scission of the polymer at the point of the dioxepin insertion and thus provide an indirect way to determine the monomer location. Additionally, dioxepins are used as spacers in the synthesis of multiblock polynorbornenes that are readily cleavable to afford the individual polynorbornene blocks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1236–1242  相似文献   

9.
Hexabutyl guanidinium acetate (HBG · OAc) was synthesized and successfully used as a catalyst for the ring‐opening polymerization (ROP) of lactides. The experimental results indicated that the guanidinium salt HBG · OAc showed satisfactory catalytic behavior. Polymerization in bulk (120 °C, 18 h) produced polylactides with moderate molecular weights (number‐average molecular weight = 2.0 × 104) and very narrow molecular weight distributions (polydispersity index = 1.07–1.12). A kinetic study of polymerization in bulk with HBG · OAc as an initiator revealed that the polymerization possessed typical characteristics of living polymerization. A ROP mechanism by HBG · OAc was proposed on the basis of the additive effect of the polymerization and the 1H NMR characterization of the microstructure of the product polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3775–3781, 2004  相似文献   

10.
Atom transfer radical emulsion polymerization of styrene using PEG‐Cl as macroinitiator under microwave irradiation was successfully conducted and monodispersed nanoparticles were prepared. The PEG‐Cl macroinitiator was synthesized, and confirmed by FTIR spectrum. The structure of the PEG‐b‐PSt diblock copolymer was characterized by 1H‐NMR and the number of styrene unit in the diblock copolymer was calculated. The morphology, size, and size distribution of the nanoparticles were characterized by transmission electron microscope (TEM) and photon correlation spectroscopy (PCS). The effects of the ratio of macroinitiator and monomer, the ratio of catalyst and macroinitiator on the size and size distribution of nanoparticles were investigated. It was found that the diameters of PEG‐b‐PSt nanoparticles prepared under microwave irradiation were smaller (<50 nm) and more monodispersed than those prepared with conventional heating. Moreover, with the increasing of the ratio of St/PEG‐Cl, the hydrodynamic diameters (Dh) of the nanoparticles increased and the poly index decreased, both Dh and poly index of the nanoparticles prepared under microwave irradiation were smaller then those prepared with conventional heating; as the concentration of catalyst increased, the Dh of the nanoparticles decreased and the poly index of the nanoparticles increased. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 481–488, 2008  相似文献   

11.
Chemistry of 2‐oxazolines is involved in the polymer synthesis fields of cationic ring‐opening polymerization (CROP) and enzymatic ring‐opening polyaddition (EROPA), although both polymerizations look like a quite different class of reaction. The key for the polymerization to proceed is combination of the catalyst (initiator) and the design of monomers. This article describes recent developments in polymer synthesis via these two kinds of polymerizations to afford various functional polymers having completely different structures, poly(N‐acylethylenimine)s via CROP and 2‐amino‐2‐deoxy sugar unit‐containing oligo and polysaccharides via EROPA, respectively. From the viewpoint of reaction mode, an acid‐catalyzed ring‐opening polyaddition (ROPA) is considered to be a crossing where CROP and EROPA meet. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1251–1270, 2010  相似文献   

12.
An amino isopropoxyl strontium (Sr‐PO) initiator, which was prepared by the reaction of propylene oxide with liquid strontium ammoniate solution, was used to carry out the ring‐opening polymerization (ROP) of cyclic esters to obtain aliphatic polyesters, such as poly(ε‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA). The Sr‐PO initiator demonstrated an effective initiating activity for the ROP of ε‐caprolactone (ε‐CL) and L‐lactide (LLA) under mild conditions and adjusted the molecular weight by the ratio of monomer to Sr‐PO initiator. Block copolymer PCL‐b‐PLLA was prepared by sequential polymerization of ε‐CL and LLA, which was demonstrated by 1H NMR, 13C NMR, and gel permeation chromatography. The chemical structure of Sr‐PO initiator was confirmed by elemental analysis of Sr and N, 1H NMR analysis of the end groups in ε‐CL oligomer, and Fourier transform infrared (FTIR) spectroscopy. The end groups of PCL were hydroxyl and isopropoxycarbonyl, and FTIR spectroscopy showed the coordination between Sr‐PO initiator and model monomer γ‐butyrolactone. These experimental facts indicated that the ROP of cyclic esters followed a coordination‐insertion mechanism, and cyclic esters exclusively inserted into the Sr–O bond. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1934–1941, 2003  相似文献   

13.
This study describes the synthesis of polynorbornene colloidal particles able to release active molecules in response to pH change. Such functionalized polynorbornene latices with surface active molecules have been obtained by ring‐opening metathesis copolymerization in a dichloromethane/ethanol medium in the presence of α‐norbornenyl poly(ethylene oxide) macromonomer. Two different strategies of introduction of the active molecule—either at their periphery or at their core— have been contemplated. The particles have been characterized by both dynamic light scattering and transmission electron microscopy. Their size was found to range from 260 to 600 nm. The release of the active molecules was monitored by UV spectrometry. After 48 h in an appropriate HCl buffer (pH = 3) more than 80% of the initially linked active molecule was released. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 217–229, 2005  相似文献   

14.
This article proposes the first report on the synthesis of nanometric crosslinked polynorbornene particles by ring‐opening metathesis polymerization in dispersion using ruthenium‐based complex (PCy3)2Cl2Ru?CHPh as initiator. Stable but raspberry‐shaped particles were obtained. In this study, a particular attention was paid to the influence of the crosslinker nature and addition mode on reaction kinetics and morphology of the latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
For the living ring‐opening polymerization (ROP) of epoxy monomers, the catalytic activity of organic superbases, tert‐butylimino‐tris(dimethylamino)phosphorane, 1‐tert‐butyl‐2,2,4,4,4‐pentakis(dimethylamino)‐2Λ5,4Λ5‐catenadi(phosphazene), 2,8,9‐triisobutyl‐2,5,8,9‐tetraaza‐1‐phosphabicyclo[3.3.3]undecane, and 1‐tert‐butyl‐4,4,4‐tris(dimethylamino)‐2,2‐bis[tris(dimethylamino)phosphoranylidenamino]‐2Λ5,4Λ5‐catenadi(phosphazene) (t‐Bu‐P4), was confirmed. Among these superbases, only t‐Bu‐P4 showed catalytic activity for the ROP of 1,2‐butylene oxide (BO) to afford poly(1,2‐butylene oxide) (PBO) with predicted molecular weight and narrow molecular weight distribution. The results of the kinetic, post‐polymerization experiments, and MALDI‐TOF MS measurement revealed that the t‐Bu‐P4‐catalyzed ROP of BO proceeded in a living manner in which the alcohol acted as the initiator. This alcohol/t‐Bu‐P4 system was applicable to the glycidol derivatives, such as benzyl glycidyl ether (BnGE) and t‐butyl glycidyl ether, to afford well‐defined protected polyglycidols. The α‐functionalized polyethers could be obtained using different functionalized initiators, such as 4‐vinylbenzyl alcohol, 5‐hexen‐1‐ol, and 6‐azide‐1‐hexanol. In addition, the well‐defined cyclic‐PBO and PBnGE were successfully synthesized using the combination of t‐Bu‐P4‐catalyzed ROP and click cyclization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
The efficacy of a metal‐silsesquioxane, namely, heptaisobutyl (isopropoxyde)titanium‐polyhedral oligomeric silsesquioxanes (Ti‐POSS), as initiator of the ring‐opening polymerization of L ‐lactide (LLA) has been assessed. Indeed, as demonstrated by proton nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC) measurements, a well‐controlled polymerization occurs via a coordination‐insertion mechanism. Moreover, the above reaction leads to the direct insertion of the silsesquioxane molecule into the polymer backbone, thus producing a hybrid system. Differential scanning calorimetry measurements demonstrated that in comparison with a commercial poly‐L ‐lactide (PLLA), the polymers prepared with Ti‐POSS exhibit a higher crystallinity. Indeed, the presence of silsesquioxane molecules, attached to one end of the polymer chains, has been found to appreciably affect the crystal nucleation density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
The synthesis of polypeptide‐containing block copolymers combining N‐carboxyanhydride (NCA) ring‐opening polymerization and atom transfer radical polymerization (ATRP) was investigated. An amide initiator comprising an amine function for the NCA polymerization and an activated bromide for ATRP was used. Well‐defined polypeptide macroinitiators were obtained from γ‐benzyl‐L ‐glutamate NCA, O‐benzyl‐serine NCA, and N‐benzyloxy‐L ‐lysine. Subsequent ATRP macroinitiation from the polypeptides resulted in higher than expected molecular weights. Analysis of the reaction products and model reactions confirmed that this is due to the high frequency of termination reactions by disproportionation in the initial phase of the ATRP, which is inherent in the amide initiator structure. In some cases selective precipitation could be applied to remove unreacted macroinitiator to yield well‐defined block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

18.
New monoalkyl‐substituted lactides were synthesized by reaction of α‐hydroxy acids with 2‐bromopropionyl bromide, and polymerized with various catalysts in the presence of benzyl alcohol by ring‐opening polymerization (ROP). The classic tin(II) 2‐ethylhexanoate (Sn(Oct)2) catalyst was leading to polymers with narrow distribution and predictable molecular weights, in polymerizations in bulk or toluene at 100 °C. The polymerization rate was corresponding to the steric hindrance of the alkyl substituents, such as butyl, hexyl, benzyl, isopropyl, and dimethyl groups. A yield of 83% was obtained with the hexyl‐substituted lactide after 1 h of polymerization. Excellent conversions (97%) could be achieved by using the alternative catalyst 4‐(dimethylamino)pyridine (DMAP). This latter organic catalyst was most efficient in polymerizing the more steric‐hindered lactides with good molecular weight and polydispersity control, in comparison to the tin(II) 2‐ethylhexanoate and tin(II) trifluoromethane sulfonate [Sn(OTf)2] catalysts. The efficiency of the DMAP catalyst and the variability of the monomer synthesis route for new alkyl‐substituted lactides allow to prepare and to envision a wide range of new functionalized polylactides for the elaboration of tailored materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4379–4391, 2004  相似文献   

19.
An organocatalytic approach to controlled/living ring‐opening polymerizations (ROPs) of O‐carboxyanhydrides (OCAs) using N‐heterocyclic carbenes (NHCs) as nucleophilic catalysts has been investigated. NHCs with different structures were used in order to compare the catalytic performances in the ROP of OCA of l ‐lactic acid. 1H NMR, SEC, and MALDI‐TOF MS measurements of the products clearly indicated a controlled/living manner of the polymerization. The controlled/living nature was further confirmed by kinetic and chain extension experiments. Additionally, polylol initiators were used to produce α,ω‐dihydroxy telechelic, 3‐, and 4‐armed star‐shaped polymers. Moreover, star‐shaped diblock copolymer, bearing methyl and phenyl side groups, has been successfully synthesized with OCA/NHC system. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 . 52, 2306–2315  相似文献   

20.
《先进技术聚合物》2018,29(6):1870-1874
In this study, we have for the first time demonstrated that palladium chloride (PdCl2) is an efficient catalyst for ring‐opening polymerization of cyclohexene oxide in a solvent‐free condition. The polymerization product was in atactic structure, and reaction conditions, such as reaction temperature, time, and catalyst amount, showed effects on polymerization conversion yield, turnover number, and number‐average molecular weight of the resulting poly(cyclohexene oxide). PdCl2 catalysis follows a cationic ring‐opening mechanism. The polymerization result is highly determined by the chemical structure of the monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号