首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We develop and analyze a least‐squares finite element method for the steady state, incompressible Navier–Stokes equations, written as a first‐order system involving vorticity as new dependent variable. In contrast to standard L2 least‐squares methods for this system, our approach utilizes discrete negative norms in the least‐squares functional. This allows us to devise efficient preconditioners for the discrete equations, and to establish optimal error estimates under relaxed regularity assumptions. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 237–256, 1999  相似文献   

2.
《Mathematische Nachrichten》2018,291(11-12):1859-1892
This paper is a continuation of our recent paper 8 . We will consider the semi‐linear Cauchy problem for wave models with scale‐invariant time‐dependent mass and dissipation and power non‐linearity. The goal is to study the interplay between the coefficients of the mass and the dissipation term to prove global existence (in time) of small data energy solutions assuming suitable regularity on the L2 scale with additional L1 regularity for the data. In order to deal with this L2 regularity in the non‐linear part, we will develop and employ some tools from Harmonic Analysis.  相似文献   

3.
We provide new insights into the a priori theory for a time‐stepping scheme based on least‐squares finite element methods for parabolic first‐order systems. The elliptic part of the problem is of general reaction‐convection‐diffusion type. The new ingredient in the analysis is an elliptic projection operator defined via a nonsymmetric bilinear form, although the main bilinear form corresponding to the least‐squares functional is symmetric. This new operator allows to prove optimal error estimates in the natural norm associated to the problem and, under additional regularity assumptions, in the L2 norm. Numerical experiments are presented which confirm our theoretical findings.  相似文献   

4.
A new first‐order formulation for the two‐dimensional elasticity equations is proposed by introducing additional variables which, called stresses here, are the derivatives of displacements. The resulted stress–displacement system can be further decomposed into two dependent subsystems, the stress system and the displacement system recovered from the stresses. For constructing finite element approximations to these subsystems with appropriate boundary conditions, a two‐stage least‐squares procedure is introduced. The analysis shows that, under suitable regularity assumptions, the rates of convergence of the least‐squares approximations for all the unknowns are optimal both in the H1‐norm and in L2‐norm. Also, numerical experiments with various Poisson's ratios are examined to demonstrate the theoretical estimates. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a spectral collocation approximation is proposed for neutral and nonlinear weakly singular Volterra integro‐differential equations (VIDEs) with non‐smooth solutions. We use some suitable variable transformations to change the original equation into a new equation, so that the solution of the resulting equation possesses better regularity, and the the Jacobi orthogonal polynomial theory can be applied conveniently. Under reasonable assumptions on the nonlinearity, we carry out a rigorous error analysis in L norm and weighted L2 norm. To perform the numerical simulations, some test examples (linear and nonlinear) are considered with nonsmooth solutions, and numerical results are presented. Further more, the comparative study of the proposed methods with some existing numerical methods is provided.  相似文献   

6.
We introduce the concept of Lp-maximal regularity for second order Cauchy problems. We prove Lp-maximal regularity for an abstract model problem and we apply the abstract results to prove existence, uniqueness and regularity of solutions for nonlinear wave equations. The author acknowledges with thanks the support provided by the Department ofApplied Analysis, University of Ulm, and the travel grants provided by NBMH India and MSF Delhi, India.  相似文献   

7.
We consider the Navier–Stokes system with variable density and variable viscosity coupled to a transport equation for an order‐parameter c. Moreover, an extra stress depending on c and ?c, which describes surface tension like effects, is included in the Navier–Stokes system. Such a system arises, e.g. for certain models of granular flows and as a diffuse interface model for a two‐phase flow of viscous incompressible fluids. The so‐called density‐dependent Navier–Stokes system is also a special case of our system. We prove short‐time existence of strong solution in Lq‐Sobolev spaces with q>d. We consider the case of a bounded domain and an asymptotically flat layer with a combination of a Dirichlet boundary condition and a free surface boundary condition. The result is based on a maximal regularity result for the linearized system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
We study the regularity and behavior at the origin of solutions to the two‐dimensional degenerate Monge‐Ampère equation det D2u = |x|α with α > ?2. We show that when α > 0, solutions admit only two possible behaviors near the origin, radial and nonradial, which in turn implies C2, δ‐regularity. We also show that the radial behavior is unstable. For α < 0 we prove that solutions admit only the radial behavior near the origin. © 2008 Wiley Periodicals, Inc.  相似文献   

9.
We employ a piecewise-constant, discontinuous Galerkin method for the time discretization of a sub-diffusion equation. Denoting the maximum time step by k, we prove an a priori error bound of order k under realistic assumptions on the regularity of the solution. We also show that a spatial discretization using continuous, piecewise-linear finite elements leads to an additional error term of order h 2 max (1,logk  − 1). Some simple numerical examples illustrate this convergence behaviour in practice. We thank the University of New South Wales for financial support provided by a Faculty Research Grant.  相似文献   

10.
We study in this article the long‐time behavior of solutions of fourth‐order parabolic equations in bfR3. In particular, we prove that under appropriate assumptions on the nonlinear interaction function and on the external forces, these equations possess infinite‐dimensional exponential attractors whose Kolmogorov's ε‐entropy satisfies an estimate of the same type as that obtained previously for the ε‐entropy of the global attractor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper global Hs‐ and Lp‐regularity results for the stationary and transient Maxwell equations with mixed boundary conditions in a bounded spatial domain are proved. First it is shown that certain elements belonging to the fractional‐order domain of the Maxwell operator belong to Hs(Ω) for sufficiently small s > 0. It follows from this regularity result that Hs(Ω) is an invariant subspace of the unitary group corresponding to the homogeneous Maxwell equations with mixed boundary conditions. In the case that a possibly non‐linear conductivity is present a Lp‐regularity theorem for the transient equations is proved. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
The purpose of this paper is to study the finite element method for second order semilinear elliptic interface problems in two dimensional convex polygonal domains. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with straight interface triangles [Numer. Math., 79 (1998), pp. 175–202]. For a finite element discretization based on a mesh which involve the approximation of the interface, optimal order error estimates in L 2 and H 1-norms are proved for linear elliptic interface problem under practical regularity assumptions of the true solution. Then an extension to the semilinear problem is also considered and optimal error estimate in H 1 norm is achieved.  相似文献   

13.
We present an existence result for Lévy‐type processes which requires only weak regularity assumptions on the symbol with respect to the space variable x. Applications range from existence and uniqueness results for Lévy‐driven SDEs with Hölder continuous coefficients to existence results for stable‐like processes and Lévy‐type processes with symbols of variable order. Moreover, we obtain heat kernel estimates for a class of Lévy and Lévy‐type processes. The paper includes an extensive list of Lévy(‐type) processes satisfying the assumptions of our results.  相似文献   

14.
This is the second part of an article that is devoted to the theory of non‐linear initial boundary value problems. We consider coupled systems where each system is of higher order and of hyperbolic or parabolic type. Our goal is to characterize systematically all admissible couplings between systems of higher order and different type. By an admissible coupling we mean a condition that guarantees the existence, uniqueness and regularity of solutions to the respective initial boundary value problem. In part 1, we develop the underlying theory of linear hyperbolic and parabolic initial boundary value problems. Testing the PDEs with suitable functions we obtain a priori estimates for the respective solutions. In particular, we make use of the regularity theory for linear elliptic boundary value problems that was previously developed by the author. In part 2 at hand, we prove the local in time existence, uniqueness and regularity of solutions to the quasilinear initial boundary value problem (3.4) using the so‐called energy method. In the above sense the regularity assumptions (A6) and (A7) about the coefficients and right‐hand sides define the admissible couplings. In part 3, we extend the results of part 2 to non‐linear initial boundary value problems. In particular, the assumptions about the respective parameters correspond to the previous regularity assumptions and hence define the admissible couplings now. Moreover, we exploit the assumptions about the respective parameters for the case of two coupled systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
This work treats Lp regularity theory for weak solutions of parabolic equations in divergence form with discontinuous coefficients on nonsmooth domains. We essentially obtain an optimal condition on the coefficients under which the global W1,p regularity theory holds. This work was supported by SNU foundation in 2005.  相似文献   

16.
In this paper, we obtain the global regularity estimates in Orlicz spaces for second‐order divergence elliptic and parabolic equations with BMO coefficients in the whole space. In fact, the global result can follow from the local estimates. As a corollary we obtain Lp‐type regularity estimates for such equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
We study the global regularity of classical solution to two‐and‐half‐dimensional magnetohydrodynamic equations with horizontal dissipation and horizontal magnetic diffusion. We prove that any possible finite time blow‐up can be controlled by the L‐norm of the vertical components. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
We study the initial boundary value problem of a class of fourth order semilinear parabolic equations. Global existence and nonexistence of solutions with initial data in the potential well are derived. Moreover, by using the iteration technique for regularity estimates, we obtain that for any k ≥ 0, the semilinear parabolic possesses a global attractor in Hk(Ω), which attracts any bounded subsets of Hk(Ω) in the Hk‐norm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This is the third part of an article that is devoted to the theory of non‐linear initial boundary value problems. We consider coupled systems where each system is of higher order and of hyperbolic or parabolic type. Our goal is to characterize systematically all admissible couplings between systems of higher order and different type. By an admissible coupling we mean a condition that guarantees the existence, uniqueness and regularity of solutions to the respective initial boundary value problem. In part 1, we develop the underlying theory of linear hyperbolic and parabolic initial boundary value problems. Testing the PDEs with suitable functions we obtain a priori estimates for the respective solutions. In particular, we make use of the regularity theory for linear elliptic boundary value problems that was previously developed by the author. In part 2, we prove the local in time existence, uniqueness and regularity of solutions to quasilinear initial boundary value problems using the so‐called energy method. In the above sense the regularity assumptions about the coefficients and right‐hand sides define the admissible couplings. In part 3 at hand, we extend the results of part 2 to the nonlinear initial boundary value problem (4.2). In particular, assumptions (B8) and (B9) about the respective parameters correspond to the previous regularity assumptions and hence define the admissible couplings now. Moreover, we exploit assumptions (B8) and (B9) for the case of two coupled systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
We propose and analyze an application of a fully discrete C2 spline quadrature Petrov‐Galerkin method for spatial discretization of semi‐linear parabolic initial‐boundary value problems on rectangular domains. We prove second order in time and optimal order H1 norm convergence in space for the extrapolated Crank‐Nicolson quadrature Petrov‐Galerkin scheme. We demonstrate numerically both L2 and H1 norm optimal order convergence of the scheme even if the nonlinear source term is not smooth. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号