首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C. Nyberg 《Surface science》1977,65(2):389-398
The reaction of oxygen with evaporated films of Ca, Sr and Ba has been studied with soft X-ray appearance potential spectroscopy (SXAPS). Both O 1s and Ca 2p12,32, Sr 2p32 and Ba 3d52 spectra were recorded. For Ca and Sr two distinct reactivity regimes were distinguishable: (i) a low exposure regime characterized by a single broad peak in the O 1s spectra and unchanged metal spectra, (ii) a high exposure regime or oxide regime characterized by multipeaked O1s spectra and appreciable changes in the metal spectra. The exposure at which the nucleation of oxide starts is determined. The bonding in the metal-oxygen complex is discussed.  相似文献   

2.
Oxidation of the Al(111) surface is a two-stage process in which the formation of an ordered oxygen overlayer precedes the creation of a bulk-like amorphous oxide. An electronic structure calculation is reported here for the clean and oxygen-covered Al(111) surface and for bulk A12O3. The calculation uses an atomic-orbital basis and the metal surface is modelled by an infinite two-dimensional crystal, containing seven layers of aluminium atoms. Oxygen atoms occupy three-fold sites, with an Al-O separation of 1.9 Å. The oxygen 2p resonance in the (1 × 1) chemisorbed overlayer is about 3 eV wide, compared to 1.9 eV for an equivalent isolated layer of oxygen atoms unhybridized with the metal. The valence band of A12O3 is about 1.5 eV wider than the chemisorbed oxygen resonance, but in both cases most of the states are concentrated in the top 1.5 eV of the band. The results are related to available ultraviolet photoemission spectra, including the recent angular-resolved spectra of Martinson and Flodström.  相似文献   

3.
The intrinsic zero-energy loss profiles of transition metal 2p and 3p XPS spectra for Cr, Mn, and Fe oxides are obtained by spectral deconvolution and compared with Shirley-type background corrected profiles. The metal core level spectra are deconvoluted by O 1s spectra as the response function of each oxide. As the O 1s spectra include intrinsic and extrinsic energy loss parts, the background corrected core level spectra are zero-energy loss spectra. The good agreement of the deconvoluted spectra with the reported spectra obtained by the many body effect theory indicates that the background subtraction method is accurate. A comparison of the deconvoluted with the background corrected spectra of the Shirely-type subtraction reveals that almost all the spectra coincide with each other except for Fe 3p with -Fe2O3. The good coincidence of the Shirley-type corrected spectra with the deconvoluted and calculated spectra indicates that Shirley-type background correction can be used for daily quantitative surface analysis.  相似文献   

4.
Ultrathin MgO films were grown on a W(1 1 0) substrate while metastable impact electron (MIES) and photoelectron (UPS) spectra were measured in situ; apart from the valence band emission, no additional spectral features were detected. The oxide surface was exposed to metal atoms (Cu, Pd) at RT. A comparison with the DOS extracted from first-principles DFT calculations shows that the metal-induced intensity developing above the top of the O 2p valence band in the UP spectra under Cu(Pd) exposure is caused by Cu 3d (Pd 4d) emission. The emission seen in the MIES spectra is attributed to the ionization of Cu 3d and 4s states of adsorbed neutral Cu atoms in an Auger process, Auger neutralization, involving two electrons from the surface, at least one of them from the metal adsorbate. The shape of the MIES spectra suggests metallic island growth even at the lowest studied exposures, which is supported by the first-principles calculations.  相似文献   

5.
C. Nyberg 《Surface science》1979,82(1):165-176
The 1s level soft x-ray appearance potential spectra of C, N and O chemisorbed on polycrystalline Cr, Mo and W surfaces have been observed. The adsorbate ls spectra show the following characteristic features in the chemisorption regime: (i) Cr: one single peak; (ii) Mo and W: a doublet structure. We tentatively assume that the doublet structure is due to a splitting in the antibonding levels of the surface complex. Oxidation of Mo and W at high temperature causes changes in the metal (Mo 2p32 and W 3d52) and in the oxygen 1s spectra as compared with the spectra obtained after room temperature adsorption of oxygen.  相似文献   

6.
High resolution energy loss spectra of 4 eV electrons reflected in the specular direction from Ni(100) surface clean or covered by the ordered structures obtained in the different stages of the metal oxidation, are analysed with reference to LEED patterns. At room temperature, the successive p(2 × 2) and c(2 × 2) structures associated with the chemisorption of oxygen have been observed without modification of the energy loss spectra, in respect of the clean nickel surface. Surface phonons are known to occur in the case of the c(2 × 2)S ordered layer and their absence in the case of Ni-O corresponding system is discussed. After short exposures to oxygen between 200 to 500° C, the surface exhibits a so called “intermediate oxide”. It is identified by its hexagonal unit mesh (~5 Å) with two equivalent orientations along the [100] and [110] directions of the substrate and its vibrational spectra characterized by a loss peak at ? 112.5 meV (± 2.5 meV). Subsequent exposures to oxygen lead to the formation of the (100) face of NiO (in epitaxy on the Ni(100) face) accurately identified by its LEED pattern. The obtained typical multiple loss spectra with spacing 67.5 meV (± 15 meV) reveal a scattering of low energy electrons by long wavelength optical phonons associated to the oxide. The characteristic energy loss (67.5 meV) is in relative good agreement with the energy of the Fuchs-Kliewer surface phonon calculated from the optical constants of the nickel oxide.  相似文献   

7.
Cerium and titanium are examples of reactive metals that form protective oxide films on their surfaces upon exposure to oxygen. In order to study the building up of these oxide films we have undertaken photoemission measurements with X-ray and ultraviolet radiation (ESCA and UPS). Cerium and titanium levels were studied using ESCA on freshly in situ evaporated metal films. These levels, as well as the O 1s level, were studied after different oxygen exposures. In order to vary the probing depth, spectra have been recorded at two different electron emission angles. All measurements were performed at room temperature. Effects of oxygen exposures upon core levels were quite different in the two metals. In the Ce 3d spectrum a strong peak related to the oxide was observed at an exposure of only 2 L. Such a strong peak was not observed in the Ti 2p spectrum even after an exposure of 3000 L. The valence band spectrum of Ti as observed both by UPS and ESCA measurements, however, changed significantly at much smaller exposures.  相似文献   

8.
At first, X-ray photoelectron spectroscopy (XPS) analyses of reference and carbon dioxide plasma treated polyethylene terephthalate (PET) were carried out. Significant chemical modifications were outlined in the treated PET surface in comparison with the reference one. The formation of new oxygenated groups was evidenced. These modifications heighten the level of interactions between the polymer substrate and the deposited coating.In a second stage, zinc oxide thin films were elaborated by r.f. magnetron sputtering from a ceramic target and with a reactive gas (mixture of argon-1% oxygen) under optimised conditions on CO2 plasma treated PET. The interfacial chemistry between the plasma treated PET and the zinc oxide was also studied by XPS. The line shape changes in the high-resolution core level spectra of carbon C1s, oxygen O1s, and zinc (Zn2p3/2, Zn3p), with the progressive deposition of zinc oxide coatings being recorded. The obtained spectra were fitted to mixed Gaussian-Lorentzian components using XPS CASA software.An interaction scheme between the zinc oxide thin layer and its polymer substrate, in the first stage of deposition, was proposed and checked by corroborating the findings of the different XPS spectra and their decompositions. It suggests the formation of ZnOC complexes at the interface, which are promoted by an electron transfer from zinc to oxygen in oxygenated species, mainly alcohol groups, generated by the CO2 plasma treatment of PET.  相似文献   

9.
《Applied Surface Science》1988,31(4):460-470
The thickness of the passivation layers formed in air on scandium at room temperature was measured by XPS using the inelastic mean-free-path (IMFP) of the Sc 2p photoelectrons as well as an extrapolation of layer thickness measurements at oxygen exposures <106 L. The IMFP of scandium and scandium oxide was determined experimentally by the “overlayer” technique. The XPS standard spectra of metallic scandium and of scandium oxide were recorded. The line parameters of the Sc 2p and of the O 1s spectra were determined by a convolution program.  相似文献   

10.
The deposition of vanadium metal onto stoichiometric TiO2(110) has been studied with photoelectron spectroscopy from low to high coverages of vanadium. A synchrotron source was employed in XPS experiments for the study of submonolayer coverages of vanadium in order to determine the oxidation state of the vanadia species formed at submonolayer coverages. The exposure of the titania surface to vanadium metal results in charge-transfer from vanadium to titania at the interface. At low doses of the metal vigorous interaction between the metal and titania surface yields reduction of the Ti4+ species to Ti3+ at the interface, as evidenced by both changes in the lineshape of the Ti 2p XPS spectra and Ti LIII-edge spectra. Concurrent with this surface reduction vanadium metal is oxidized. At higher vanadium doses the vanadium 2p binding energy indicates the formation of metallic vanadium. When metallic vanadium deposition is followed by exposure of the surface to oxygen, only one vanadium species remains on the surface, the binding energy of which corresponds to that of the oxide present initially at low doses of vanadium metal. By comparison of the V 2p binding energies to those of bulk oxides, it appears that the oxidation state of the vanadium in the oxide species is +3, suggesting the formation of V2O3 on the surface. Vanadium LIII-edge data also suggest that V2O5 is not formed by the oxidation of predosed vanadium metal.  相似文献   

11.
The nature of argon-ion bombarded nickel surfaces (polycrystalline, and (111), (110) and (100) single crystals) and their subsequent interaction with oxygen at ordinary temperatures have been studied using X-ray and UV photoelectron spectroscopy, including angular variation measurements and the determination of work function changes, in combination in the same apparatus. Variations between the HeI spectra of the four clean substrates were taken to confirm the presence of substantial order within the depth sampled by UPS. The four surfaces exhibited similar but not identical behaviour during oxidation, resembling that reported by other workers from studies of both annealed single crystals and evaporated polycrystalline films. The initial process was deduced to be essentially dissociative chemisorption: no evidence supporting a previous suggestion of associative adsorption at low coverages was found. Oxygen commenced to penetrate below the surface of all samples before oxygen equivalent to a monolayer had been taken up (~10 L exposure) and further substantial uptake followed resulting in the formation of a stable film (~18 Å) of nickel oxide by ~100 L exposure. This oxide layer was not stoichiometric nickel(II) oxide: it was characterized by the presence of two distinct O 1s signals, the relative intensities of which depended on the crystallographic nature of the surface. It is tentatively suggested that the oxygen signal with the higher BE be associated with NiIII. Comparison of the X-ray and UV spectra suggests that the oxide film is very non-uniform in thickness, some Ni metal remaining very close to the surface.  相似文献   

12.
The oxygen chemisorption on an alkali (Na, K, Cs) covered Ni(100) surface and its initial oxidation were studied by Auger and electron energy loss spectroscopy (ELS). It was found that in the presence of an alkali metal, the sticking coefficient S remains unity up to a given oxygen coverage of θOcwhose value depends on the alkali overlayer concentration and the ionicity of the Ni-alkali metal bond. At a given oxygen coverage, the line shapes of Auger and loss spectra are almost the same for alkali-covered and clean Ni(100), which suggests that alkali metals cause no change in the character of the Ni-O bond. The effect of alkali metals is associated with increasing electron charge in the surface region, which facilitates oxygen chemisorption. The enhanced surface oxygen concentration in the presence of an alkali metal results in the formation of an oxide phase at lower oxygen exposures than is the case of clean Ni surfaces.  相似文献   

13.
Eizo Miyazaki 《Surface science》1983,131(1):L390-L398
Theoretical calculations by DV-Xα-MO have been performed for clusters representing a Zn(0001) surface with oxygen. The calculated DOS is in good agreement with the experimental UPS spectra found by Briggs or by Abbati et al. A large amount of electron flow from Zn atoms into the oxygen atom occurs and this causes (1) a remarkable upward shift of the oxygen 2p level and (2) formation of an unoccupied level near the highest occupied level. The bonds between the oxygen 2p and the zinc 4s or 4p orbitals have a strong bonding character, and the contribution of the zinc 3d orbital to the Zn-O bond is not important.  相似文献   

14.
The chemical composition of the AlGaN/GaN surface during typical process steps in transistor fabrication was studied using X-ray photoelectron spectroscopy (XPS). The steps studied included organic solvent cleaning, 1:1 HCl:H2O dip, buffered oxide etch dip, oxygen plasma descum and rapid thermal annealing (RTA). The surface composition was calculated after correction for the interference of the Ga Auger lines in the N 1s portion of the spectra. The buffered oxide etched (BOE) surface showed a greater tendency for Al (compared to Ga) to be oxidized in the surface, under a layer of adventitious carbon. Three different treatments were found to yield a combination of low C and O levels in the surface. Both plasma cleaning and RTA were highly effective at reducing the carbon contamination of the surface, but did increase the oxygen levels. The RTA treated surface was found to have low levels of oxygen incorporation to a depth of 2-6 nm.  相似文献   

15.
Cesium adsorption on oxygenated and oxidized W(110) is studied by Auger electron spectroscopy, LEED, thermal desorption and work function measurements. For oxygen coverages up to 1.5 × 1015 cm?2 (oxygenated surface), preadsorbed oxygen lowers the cesiated work function minimum, the lowest (~1 eV) being obtained on a two-dimensional oxide structure with 1.4 × 1015 oxygen atoms per cm2. Thermal desorption spectra of neutral cesium show that the oxygen adlayer increases the cesium desorption energy in the limit of small cesium coverages, by the same amount as it increases the substrate work function. Cesium adsorption destroys the p(2 × 1) and p(2 × 2) oxygen structures, but the 2D-oxide structure is left nearly unchanged. Beyond 1.5 × 1015 cm?2 (oxidized surface), the work function minimum rises very rapidly with the oxygen coverage, as tungsten oxides begin to form. On bulk tungsten oxide layers, cesium appears to diffuse into the oxide, possibly forming a cesium tungsten bronze, characterized by a new desorption state. The thermal stability of the 2D-oxide structure on W(110) and the facetting of less dense tungsten planes suggest a way to achieve stable low work functions of interest in thermionic energy conversion applications.  相似文献   

16.
Auger (AES) and X-ray photoelectron spectroscopic (XPS) characterizations of electrochemically oxidized titanium are described. Surface oxides on thin (200–250 Å) vacuum deposited titanium films were formed under conditions of linear potential scan in 1 N KClO4, 1 N HClO4 and 1 N H2SO4. Current/voltage, capacitance/voltage and surface conductance/voltage relationships confirmed the irreversible formation of the surface oxide at thickness of 20–30 Å/V, for low applied potentials. Post moretem analysis of the thin films by AES and XPS indicated a mixture of metal and metal oxides (TiO2, Ti2O3, TiO) on each surface, with the higher oxide states predominating on the electrochemically oxidized films. Observation of the LIIIM2,3M4,5, N(E) signal shape in the Auger spectra of the potentially oxidized oxidized films showed a suboxide TiO-like surface rather than an TiO2 surface state. Deconvolution of the Ti(2p12, 32) XPS spectra confirmed the coexistence of multiple oxidation states of Ti during electrochemical or atmospheric oxidation of the films. Ion sputtering of each surface was used to characterize the subsurface metal/metal oxide composition and to correlate the oxygen to metal atomic ratio with electrochemical pretreatment.  相似文献   

17.
Photoelectron and Auger electron measurements have been made on polycrystalline films of sodium metal evaporated in ultra high vacuum, and on Na2O produced by in-situ oxidation by dry oxygen. Most of the spectra were recorded using Mg Kα (1254 eV) radiation but excitation by 5 keV electrons or monochromatized Al Kα (1487 eV) X-rays was used for specific purposes. Core and valence electron binding energies, photoionization cross-sections relative to Na 1s, KLL and KLV Auger energies and transition probabilities are reported. Energy losses in the metal and oxide are discussed and the relative intensities of surface and bulk plasmon losses have been used to calculate mean electron escape depths in the metal. When corrections were made for experimental geometry, escape depths of 10 Å at 180 eV and 31 Å at 1200 eV were obtained. An escape depth of 23 Å at 980 eV was obtained by Na 1s-Na K-Auger intensity correlation and this is consistent with the plasmon data. Data on Auger satellite lines are presented and, in particular, evidence has been obtained which indicates that a high energy satellite should not be attributed to a plasmon gain mechanism. Valence band influences on the KLV Auger spectra are discussed with reference to the XPS spectrum and other sources of valence band information. Unexpected structure was found in the KLV spectra of the metal which, pending thorough interpretation, offsets the sensitivity and resolution advantages which these spectra otherwise offer for valence band studies.  相似文献   

18.
Metal (Cu; Pd) adsorption on MgO: investigations with MIES and UPS   总被引:1,自引:0,他引:1  
MgO films (2-nm thick) were grown on W(110) while metastable impact electron (MIES) and photoelectron (UPS(HeI)) spectra were collected in situ; apart from the valence-band emission no additional spectral features could be detected. The oxide surface was exposed to metal atoms (Cu; Pd) (substrate at 300 K). For Cu, but not for Pd/MgO, a characteristic initial decrease of the surface work function by about 0.4 eV is observed for small exposures. Metal-induced intensity develops above the top of the O2p valence band in UPS caused by 3dCu (4dPd) emission. The emission seen for Cu/MgO in the MIES spectra above the 2pO valence band is attributed to the ionization of Cu4s states of neutrally adsorbed Cu species; the shape of the MIES spectra suggests island growth even at the lowest studied exposures. For Cu/MgO the critical coverage for the transition from 2D to 3D island growth, as determined with MIES, is estimated as 0.15 monolayers. PACS 79.20; 79.60.Dp; 73.22.-f; 82.80.Pv  相似文献   

19.
By means of scanning tunneling microscopy and density functional theory calculations we demonstrate that on the Rh(110)-(10 x 2)-O surface, a prototypical multiphase surface of an oxidized transition metal model catalyst, water formation upon H2 exposure is a two-step reaction, with each step requiring special active sites. The 1st step initiates at (2 x 1)p2mg-O defect islands in the (10 x 2) structure and propagates across the surface as a reaction front, removing half of the adsorbed oxygen. The oxygen decorated Rh ridges of the (10 x 2) structure lose their tensile strain upon this reduction step, whereby nanoscale patches of clean Rh become exposed and act as special reaction sites in the 2nd reaction step, which therefore initiates homogeneously over the entire surface.  相似文献   

20.
We wish to report the observation of O 1s level soft X-ray appearance potential spectra for O adsorbed on clean polycrystalline surfaces of Ti, Cr, Fe and Ni. The spectra are detectable in the chemisorption regime and are then characterized by one single peak at the threshold. The peak is thought to be related to an enhanced local density of unfilled valence states on the oxygen atoms. These simple spectra are in sharp contrast to the multipeaked O 1s level spectra observed from the surface oxides grown after prolonged oxygen exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号