首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using core‐first strategy, the amphiphilic A4B4 star‐shaped copolymers [poly(ethylene oxide)]4[poly(ε‐caprolactone)]4 [(PEO)4(PCL)4], [poly(ethylene oxide)]4[poly(styrene)]4 [(PEO)4(PS)4], and [poly(ethylene oxide)]4[poly(tert‐butyl acrylate)]4 [(PEO)4(PtBA)4] were synthesized by mechanisms transformation combining with thiol‐ene reaction. First, using a designed multifunctional mikto‐initiator with four active hydroxyl groups and four allyl groups, the four‐armed star‐shaped polymers (PEO‐Ph)4/(OH)4 with four active hydroxyl groups at core position were obtained by sequential ring‐opening polymerization (ROP) of ethylene oxide monomers, capping reaction of living oxyanion with benzyl chloride, and transformation of allyl groups into hydroxyl groups by thiol‐ene reaction. Then, the A4B4 star‐shaped copolymers (PEO)4(PS)4 or (PEO)4(PtBA)4 were obtained by atom transfer radical polymerization (ATRP) of styrene or tert‐butyl acrylate (tBA) monomers from macroinitiator of (PEO‐Ph)4/(Br)4, which was obtained by esterification of (PEO‐Ph)4/(OH)4 with 2‐bromoisobutyryl bromide. The A4B4 star‐shaped copolymers (PEO)4(PCL)4 were also obtained by ROP of ε‐caprolactopne monomers from macroinitiator of (PEO‐Ph)4/(OH)4. The target copolymers and intermediates were characterized by size‐exclusion chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectroscopy, and nuclear magnetic resonance in detail. This synthetic route might be a versatile one to various AnBn (n ≥ 3) star‐shaped copolymers with defined structure and compositions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4572–4583  相似文献   

2.
H‐shaped ABCAB terpolymers composed of polystyrene (PS) (A), poly(ethylene oxide) (PEO) (B), and poly(tert‐butyl acrylate) (PtBA) (C) were prepared by atom transfer radical coupling reaction using ABC star terpolymers as precursors, CuBr and N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalysts, and nanosize copper as the reducing agent. The synthesis of 3‐miktoarm star terpolymer PS‐PEO‐(PtBA‐Br) involved following steps: (1) the preparation of PS with an active and an ethoxyethyl‐ptotected hydroxyl group at the same end; (2) the preparation of diblock copolymer PS‐b‐PEO with ethoxyethyl‐protected group at the junction point through the ring‐opening polymerization (ROP) of EO; (3) after de‐protection of ethoxyethyl group and further modification of hydroxyl group, tBA was polymerized by atom transfer radical polymerization using PS‐b‐PEO with 2‐bromoisobutyryl functional group as macroinitiator. The H‐shaped terpolymer could be successfully formed by atom transfer radical coupling reaction in the presence of small quantity of styrene, CuBr/PMDETA, and Cu at 90 °C. The copolymers were characterized by SEC, 1H NMR, and FTIR in detail. The optimized coupling temperature is 90 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 59–68, 2009  相似文献   

3.
Poly(ethylene oxide) (PEO) star polymer with a microgel core was prepared by atom transfer radical poylmerization (ATRP) of divinyl benzene (DVB) with mono‐2‐bromoisobutyryl PEO ester as a macroinitiator. Several factors, such as the feed ratio of DVB to the initiator, type of catalysts, and purity of DVB, play important roles during star formation. The crosslinked poly(divinyl benzene) (PDVB) core was further obtained by the hydrolysis of PEO star to remove PEO arms. Size exclusion chromatography (SEC) traces revealed the bare core has a broad molecular weight distribution. PEO–polystyrene (PS) heteroarm star polymer was synthesized through grafting PS from the core of PEO star by another ATRP of styrene (St) because of the presence of initiating groups in the core inherited from PEO star. Characterizations by SEC, 1H NMR, and DSC revealed the successful preparation of the target star copolymers. Scanning electron microscopy images suggested that PEO–PS heteroarm star can form spherical micelles in water/tetrahydrofuran mixture solvents, which further demonstrated the amphiphilic nature of the star polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2263–2271, 2004  相似文献   

4.
The tadpole‐shaped copolymers polystyrene (PS)‐b‐[cyclic poly(ethylene oxide) (PEO)] [PS‐b‐(c‐PEO)] contained linear tail chains of PS and cyclic head chains of PEO were synthesized by combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). First, the functionalized polystyrene‐glycerol (PS‐Gly) with two active hydroxyl groups at ω end was synthesized by LAP of St and the subsequent capping with 1‐ethoxyethyl glycidyl ether and then deprotection of protected hydroxyl group in acid condition. Then, using PS‐Gly as macroinitiator, the ROP of EO was performed using diphenylmethylpotassium as cocatalyst for AB2 star‐shaped copolymers PS‐b‐(PEO‐OH)2, and the alkyne group was introduced onto PEO arm end for PS‐b‐(PEO‐Alkyne)2. Finally, the intramolecular cyclization was performed by Glaser coupling reaction in pyridine/Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine system under room temperature, and tadpole‐shaped PS‐b‐(c‐PEO) was formed. The target copolymers and their intermediates were well characterized by size‐exclusion chromatography, proton nuclear magnetic resonance spectroscopy, and fourier transform infrared spectroscopy in details. The thermal properties was also determined and compared to investigate the influence of architecture on properties. The results showed that tadpole‐shaped copolymers had lower Tm, Tc, and Xc than that of their precursors of AB2 star‐shaped copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Heterograft copolymers poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ ethylene oxide)‐graft‐polystyrene and poly(tert‐butyl acrylate) (poly (GTEMPO‐co‐EO)‐g‐PS/PtBA) were synthesized in one‐pot by atom transfer nitroxide radical coupling (ATNRC) reaction via “graft onto.” The main chain was prepared by the anionic ring‐opening copolymerization of ethylene oxide (EO) and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (GTEMPO) first, then the polystyrene and poly (tert‐butyl acrylate) with bromine end (PS‐Br, PtBA‐Br) were prepared by atom transfer radical polymerization (ATRP). When three of them were mixed each other in the presence of CuBr/N,N,N,N,N″‐pentamethyldiethylenetriamine (PMDETA) at 90 °C, the formed secondary carbon radicals at the PS and PtBA chain ends were quickly trapped by nitroxide radicals on poly(GTEMPO‐co‐EO). The heterograft copolymers were well defined by 1H NMR, size exclusion chromatography, fourier transform infrared, and differential scanning calorimetry in detail. It was found that the density of GTEMPO groups on main chain poly(GTEMPO‐co‐EO), the molecular weights of PS/PtBA side chains, and the structure of macroradicals can exert the great effects on the graft efficiency. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6770–6779, 2008  相似文献   

6.
The star block copolymers with polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as side chains and hyperbranched polyglycerol (HPG) as core were synthesized by combination of atom transfer radical polymerization (ATRP) with the “atom transfer nitroxide radical coupling” (“ATNRC”) reaction. The multiarm PS with bromide end groups originated from the HPG core (HPG‐g‐(PS‐Br)n) was synthesized by ATRP first, and the heterofunctional PEO with α‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy group and ω‐hydroxyl group (TEMPO‐PEO) was prepared by anionic polymerization separately using 4‐hydroxyl‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (HTEMPO) as parents compound. Then ATNRC reaction was conducted between the TEMPO groups in PEO and bromide groups in HPG‐g‐(PS‐Br)n in the presence of CuBr and pentamethyldiethylenetriamine (PMDETA). The obtained star block copolymers and intermediates were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, fourier transform‐infrared in detail. Those results showed that the efficiency of ATNRC in the preparation of multiarm star polymers was satisfactory (>90%) even if the density of coupling cites on HPG was high. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6754–6761, 2008  相似文献   

7.
Amphiphilic H‐shaped [poly(ethylene oxide)]3‐polystyrene‐[poly(ethylene oxide)]3(PEO3‐PS‐PEO3) copolymer was synthesized by 2‐methyl‐2‐nitrosopropane (MNP) induced single electron transfer nitroxide radical coupling (SETNRC) using PEO3‐(PS‐Br) as a single precursor. First, the A3B star‐shaped precursor PEO3‐(PS‐Br) was synthesized by atom transfer radical polymerization (ATRP) using three‐arm star‐shaped PEO3‐Br as macro‐initiator. Then, in the presence of Cu(I)Br/Me6TREN, the bromide group at PS end was sequentially transferred into carbon‐centered radical by single electron transfer and then nitroxide radical by reacting with MNP in mixed solvents of dimethyl sulfoxide (DMSO)/tetrahydrofuran (THF), and in situ generated nitroxide radical could again capture another carbon‐centered radical by fast SETNRC to form target PEO3‐PS‐PEO3 copolymer. The MNP induced SETNRC could reach to a high efficiency of 90% within 60 min. After the product PEO3‐PS‐PEO3 was cleaved by ascorbic acid, the SEC results showed that there was about 30% fraction of product formed by single electron transfer radical coupling (SETRC) between carbon‐centered radicals. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
An amphiphilic multiblock copolymer [poly(ethylene oxide)‐b‐polystyrene]n [(PEO‐b‐PS)n] is synthesized by using trithiocarbonate‐embedded PEO as macro‐RAFT agent. PEO with four inserted trithiocarbonate (Mn = 9200 and Mw/Mn = 1.62) groups is prepared first by condensation of α, ω‐dihydroxyl poly(ethylene oxide) with S, S′‐Bis(α, α′‐dimethyl‐α″‐acetic acid)‐trithiocarbonate (BDATC) in the presence of pyridine, then a series of goal copolymers with different St units (varied from 25 to 218 per segment) are obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The synthesis process is monitored by size exclusion chromatography (SEC), 1H NMR and FT‐IR. The self‐assembled morphologies of the copolymers are strongly dependent of the length of PS block chains when the chain length of PEO is fixed, some new morphologies as large leaf‐like aggregates (LLAs), large octopus‐like aggregates (LOAs), and coarse‐grain like micelles (CGMs) are observed besides some familiar aggregates as large compound vesicles (LCVs), lamellae and rods, and the effect of water content on the morphologies is also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6071–6082, 2006  相似文献   

9.
A novel amphiphilic branch‐ring‐branch tadpole‐shaped [linear‐poly(ε‐caprolactone)]‐b‐[cyclic‐poly(ethylene oxide)]‐b‐[linear‐poly(ε‐caprolactone)] [(l‐PCL)‐b‐(c‐PEO)‐b‐(l‐PCL)] was synthesized by combination of glaser coupling reaction with ring‐opening polymerization (ROP) mechanism. The self‐assembling behaviors of (l‐PCL)‐b‐(c‐PEO)‐b‐(l‐PCL) and their π‐shaped analogs of poly(ε‐caprolactone)/poly(ethylene oxide)]‐b‐poly(ethylene oxide)‐b‐[poly(ε‐caprolactone)/poly(ethylene oxide) with comparable molecular weight in water were preliminarily investigated. The results showed that the micelles formed from the former took a fiber look, however, that formed from the latter took a spherical look. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
This article describes the synthesis and characterization of [polystyrene‐b‐poly(2‐vinylpyridine)]n star‐block copolymers with the poly(2‐vinylpyridine) blocks at the periphery. A two‐step living anionic polymerization method was used. Firstly, oligo(styryl)lithium grafted poly(divinylbenzene) cores were used as multifunctional initiators to initiate living anionic polymerization of styrene in benzene at room temperature. Secondly, vinylpyridine was polymerized at the periphery of these living (polystyrene)n stars in tetrahydrofuran at ?78 °C. The resulting copolymers were characterized using size exclusion chromatography, multiangle laser light scattering, 1H NMR, elemental analysis, and intrinsic viscosity measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3949–3955, 2007  相似文献   

11.
Three controlled/living polymerization processes, namely atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP) and iniferter polymerization, and photoinduced radical coupling reaction were combined for the preparation of ABCBD‐type H‐shaped complex copolymer. First, α‐benzophenone functional polystyrene (BP‐PS) and poly(methyl methacrylate) (BP‐PMMA) were prepared independently by ATRP. The resulting polymers were irradiated to form ketyl radicals by hydrogen abstraction of the excited benzophenone moieties present at each chain end. Coupling of these radicals resulted in the formation of polystyrene‐b‐poly(methyl methacrylate) (PS‐b‐PMMA) with benzpinacole structure at the junction point possessing both hydroxyl and iniferter functionalities. ROP of ε‐caprolactone (CL) by using PS‐b‐PMMA as bifunctional initiator, in the presence of stannous octoate yielded the corresponding tetrablock copolymer, PCL‐PS‐PMMA‐PCL. Finally, the polymerization of tert‐butyl acrylate (tBA) via iniferter process gave the targeted H‐shaped block copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4601–4607  相似文献   

12.
以原子转移自由基偶联法合成了多臂星形聚合物S-PEO和星形杂臂共聚物PEO-PS。以傅立叶红外光谱(FT-IR)和核磁共振(1H NMR)分析方法确定了产物的结构。以GPC分析测试了产物的分子量和分子量分布。GPC分析结果表明所得聚合物分子量增大,分子量分布窄,偶联反应效率可高达99%以上。  相似文献   

13.
Mixed micelles of polystyrene‐b‐poly(N‐isopropylacrylamide) (PS‐b‐PNIPAM) and two polystyrene‐b‐poly(ethylene oxide) diblock copolymers (PS‐b‐PEO) with different chain lengths of polystyrene in aqueous solution were prepared by adding the tetrahydrofuran solutions dropwise into an excess of water. The formation and stabilization of the resultant mixed micelles were characterized by using a combination of static and dynamic light scattering. Increasing the initial concentration of PS‐b‐PEO in THF led to a decrease in the size and the weight average molar mass (〈Mw〉) of the mixed micelles when the initial concentration of PS‐b‐ PNIPAM was kept as 1 × 10?3 g/mL. The PS‐b‐PEO with shorter PS block has a more pronounced effect on the change of the size and 〈Mw〉 than that with longer PS block. The number of PS‐b‐PNIPAM in each mixed micelle decreased with the addition of PS‐b‐PEO. The average hydrodynamic radius 〈Rh〉 and average radius of gyration 〈Rg〉 of pure PS‐b‐PNIPAM and mixed micelles gradually decreased with the increase in the temperature. Both the pure micelles and mixed micelles were stable in the temperature range of 18 °C–39 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1168–1174, 2010  相似文献   

14.
The atom transfer radical polymerization of methyl methacrylate (MMA) and n‐butyl methacrylate (n‐BMA) was initiated by a poly(ethylene oxide) chloro telechelic macroinitiator synthesized by esterification of poly(ethylene oxide) (PEO) with 2‐chloro propionyl chloride. The polymerization, carried out in bulk at 90 °C and catalyzed by iron(II) chloride tetrahydrate in the presence of triphenylphosphine ligand (FeCl2 · 4H2O/PPh3), led to A–B–A amphiphilic triblock copolymers with MMA or n‐BMA as the A block and PEO as the B block. A kinetic study showed that the polymerization was first‐order with respect to the monomer concentration. Moreover, the experimental molecular weights of the block copolymers increased linearly with the monomer conversion, and the molecular weight distribution was acceptably narrow at the end of the reaction. These block copolymers turned out to be water‐soluble through the adjustment of the content of PEO blocks (PEO content >90% by mass). When the PEO content was small [monomer/macroinitiator molar ratio (M/I) = 300], the block copolymers were water‐insoluble and showed only one glass‐transition temperature. With an increase in the concentration of PEO (M/I = 100 or 50) in the copolymer, two glass transitions were detected, indicating phase separation. The macroinitiator and the corresponding triblock copolymers were characterized with Fourier transform infrared, proton nuclear magnetic resonance, size exclusion chromatography analysis, dynamic mechanical analysis, and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5049–5061, 2005  相似文献   

15.
A dual initiator (4‐hydroxy‐butyl‐2‐bromoisobutyrate), that is, a molecule containing two functional groups capable of initiating two polymerizations occurring by different mechanisms, has been prepared. It has been used for the sequential two‐step synthesis of well‐defined block copolymers of polystyrene (PS) and poly(tetrahydrofuran) (PTHF) by atom transfer radical polymerization (ATRP) and cationic ring‐opening polymerization (CROP). This dual initiator contains a bromoisobutyrate group, which is an efficient initiator for the ATRP of styrene in combination with the Cu(0)/Cu(II)/N,N,N,N,N″‐pentamethyldiethylenetriamine catalyst system. In this way, PS with hydroxyl groups (PS‐OH) is formed. The in situ reaction of the hydroxyl groups originating from the dual initiator with trifluoromethane sulfonic anhydride gives a triflate ester initiating group for the CROP of tetrahydrofuran (THF), leading to PTHF with a tertiary bromide end group (PTHF‐Br). PS‐OH and PTHF‐Br homopolymers have been applied as macroinitiators for the CROP of THF and the ATRP of styrene, respectively. PS‐OH, used as a macroinitiator, results in a mixture of the block copolymer and remaining macroinitiator. With PTHF‐Br as a macroinitiator for the ATRP of styrene, well‐defined PTHF‐b‐PS block copolymers can be prepared. The efficiency of PS‐OH or PTHF‐Br as a macroinitiator has been investigated with matrix‐assisted laser desorption/ionization time‐of‐flight spectroscopy, gel permeation chromatography, and NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3206–3217, 2003  相似文献   

16.
A novel method for preparation the comb‐like copolymers with amphihilic poly(ethylene oxide)‐block‐poly(styrene) (PEO‐b‐PS) graft chains by “graft from” and “graft onto” strategies were reported. The ring‐opening copolymerization of ethylene oxide (EO) and ethoxyethyl glycidyl ether (EEGE) was carried out first using α‐methoxyl‐ω‐hydroxyl‐poly(ethylene oxide) (mPEO) and diphenylmethyl potassium (DPMK) as coinitiation system, then the EEGE units on resulting linear copolymer mPEO‐b‐Poly(EO‐co‐EEGE) were hydrolyzed and the recovered hydroxyl groups were reacted with 2‐bromoisobutyryl bromide. The obtained macroinitiator mPEO‐b‐Poly(EO‐co‐BiBGE) can initiate the polymerization of styrene by ATRP via the “Graft from” strategy, and the comb‐like copolymers mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐PS] were obtained. Afterwards, the TEMPO‐PEO was prepared by ring‐opening polymerization (ROP) of EO initiated by 4‐hydroxyl‐2,2,6,6‐tetramethyl piperdinyl‐oxy (HTEMPO) and DPMK, and then coupled with mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐PS] by atom transfer nitroxide radical coupling reaction in the presence of cuprous bromide (CuBr)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) via “Graft onto” method. The comb‐like block copolymers mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐(PS‐b‐PEO)] were obtained with high efficiency (≥90%). The final product and intermediates were characterized in detail. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1930–1938, 2009  相似文献   

17.
Novel AB2‐type amphiphilic block copolymers of poly(ethylene glycol) and poly(N‐isopropylacrylamide), PEG‐b‐(PNIPAM)2, were successfully synthesized through single‐electron transfer living radical polymerization (SET‐LRP). A difunctional macroinitiator was prepared by esterification of 2,2‐dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether (PEG). The copolymers were obtained via the SET‐LRP of N‐isopropylacrylamide (NIPAM) with CuCl/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalytic system and DMF/H2O (v/v = 3:1) mixture as solvent. The resulting copolymers were characterized by gel permeation chromatography and 1H NMR. These block copolymers show controllable molecular weights and narrow molecular weight distributions (PDI < 1.15). Their phase transition temperatures and the corresponding enthalpy changes in aqueous solution were measured by differential scanning calorimetry. As a result, the phase transition temperature of PEG44b‐(PNIPAM55)2 is similar to that in the case of PEG44b‐PNIPAM110; however, the corresponding enthalpy change is much lower, indicating the significant influence of the macromolecular architecture on the phase transition. This is the first study into the effect of macromolecular architecture on the phase transition using AB2‐type amphiphilic block copolymer composed of PEG and PNIPAM. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4420–4427, 2009  相似文献   

18.
A series of ABC triblock copolymers, that is, polyisoprene‐block‐polystyrene‐block‐poly(ethylene oxide) (PI‐PS‐PEO), PI‐block‐poly(tert‐butyl acrylate)‐block‐PEO (PI‐PtBA‐PEO), and PI‐block‐poly(acrylic acide)‐block‐PEO (PI‐PAA‐PEO) were obtained by combination of anionic technique, atom transfer radical polymerization (ATRP), and single electron transfer nitroxide coupling (SETNRC) reaction. Anionic polymerization of isoprene followed by end capping with ethylene oxide yielded hydroxyl‐terminated PI. After esterification, PI with Br end group was used as a macroinitiator to initiate the polymerization of styrene and tBA by ATRP that was then trapped by 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group in PEO by SETNRC reaction rapidly with high efficiency in tetrahydrofuran at room temperature. The effect of reaction time and polymer chain length on SETNRC reaction was discussed in detail. In the presence of Cu0/tris[2‐(dimethylamino)ethyl]amine, SETNRC between PI‐PS‐Br and PEO‐TEMPO was carried out with the efficiency of up to 91.6% in 2 h. With the increase in polymer chain length, the efficiency decreased fleetly. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
20.
The twin‐tail tadpole‐shaped (cyclic polystyrene)‐block‐[linear poly (tert‐butyl acrylate)]2 [(c‐PS)‐b‐(l‐PtBA)2] was synthesized by combination of Glaser coupling reaction with atom transfer radical polymerization (ATRP) and living anionic polymerization (LAP). First, the telechelic PS with an active and an ethoxyethyl‐protected hydroxyl groups at both ends was prepared by LAP of St monomers using lithium naphthalenide as initiator and terminated by 1‐ethoxyethyl glycidyl ether. And the alkyne groups were introduced onto each PS end by selectively reaction of active hydroxy group with propargyl bromide in NaH/tetrahydrofuran (THF) system. Then, the intramolecular cyclization was carried out by Glaser coupling reaction in pyridine/Cu(I)Br system in air atmosphere. Finally, the macroinitiator of c‐PS with two bromine groups at the junction point was synthesized via the cleavage of ethoxyethyl group and the subsequent esterification of the deprotected hydroxyl groups with 2‐bromoisobutyryl bromide. The copolymer of (c‐PS)‐b‐(l‐PtBA)2 was obtained by ATRP of tBA monomers, and the PtBA segment was also hydrolyzed for (cyclic polystyrene)‐block‐(linear polyacrylic acid)2 [(c‐PS)‐b‐(l‐PAA)2]. The target copolymers and all intermediates were well characterized by GPC, MALDI‐TOF MS, and 1H NMR in detail. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号