首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A novel azo‐containing dithiocarbamate, 1‐phenylethyl N,N‐(4‐phenylazo) phenylphenyldithiocarbamate (PPADC), was successfully synthesized and used to mediate the polymerization of methyl acrylate (MA) and styrene (St). In the presence of PPADC, the reversible addition‐fragmentation chain transfer (RAFT) polymerization was well controlled in the case of MA, however, the slightly ill‐controlled in the case of St. Interestingly, the polymerization of St could be well‐controlled when using PPADC as the initiator in the presence of CuBr/PMDETA via atom transfer radical polymerization (ATRP) technique. In the cases of RAFT polymerization of MA and ATRP of St, the kinetic plots were both of first‐order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn). The molecular weight of the polymer measured by gel permeation chromatographer (GPC) was also close to the theoretical value (Mn(th)). The obtained polymer was characterized by 1H‐NMR analysis, ultraviolet absorption, FTIR spectra analysis and chain‐extension experiments. Furthermore, the photoresponsive behaviors of azobenzene‐terminated poly(methyl acrylate) (PMA) and polystyrene (PS) were similar to PPADC. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5626–5637, 2008  相似文献   

2.
The N‐(trimethylsilyl)bis(trifluoromethanesulfonyl)imide‐catalyzed (Me3SiNTf2‐catalyzed) group transfer polymerization (GTP) of methyl methacrylate (MMA) has been studied for synthesizing stereospecific star‐shaped poly(methyl methacrylate)s (PMMAs). The catalytic property of Me3SiNTf2 for the GTP of MMA using 1‐methoxy‐1‐trimethylsilyloxy‐2‐methyl‐propene as the initiator was confirmed by a kinetic investigation and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry measurement. The initiating efficiency (f) of Me3SiNTf2 was 0.94–1.00, which was estimated by the value of Mn(calcd)/Mn(SEC). The Me3SiNTf2‐catalyzed GTP of MMA was carried out using initiators possessing three, four, and six MTS groups (MTS3, MTS4, and MTS6, respectively) under the condition of [MMA]0/[MTS3, MTS4, or MTS6]0 = 120 at ?55 °C. All the obtained PMMAs exhibited unimodal and narrow molecular weight distributions as Mw/Mns = 1.03–1.04 and the Mw(MALS)s of the 3‐, 4‐, and 6‐armed star‐shaped PMMAs (PMMA3, PMMA4, and PMMA6, respectively) were 12.9, 12.9, and 13.4 kgmol?1, respectively, which fairly agreed with the calculated Mw(calcd) values. The syndiotacticities, rrs, of PMMA3, PMMA4, and PMMA6 were in the range of 87–89%. The stereoblock synthesis of PMMA3, PMMA4, and PMMA6 was performed by the first and second polymerizations at ?55 and 45 °C; the rrs of the first and second PMMA blocks were 87.0, 87.0, and 86.0% and 65.0, 65.0, and 64.0%, respectively. The glass transition temperatures (Tgs) were 118.1, 115.8, and 111.5 °C for the respective syndiotactic‐rich PMMA3, PMMA4, and PMMA6 and 111.5, 109.7, and 107.6 °C for the respective stereoblock ones. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A half‐metallocene iron iodide complex [Fe(Cp)I(CO)2] induced living radical polymerization of methyl acrylate (MA) in conjunction with an iodide initiator [(CH3)2C(CO2Et)I, 1 ] and Al(Oi‐Pr)3 to give polymers of controlled molecular weights and narrow molecular weight distributions (MWDs) (Mw/Mn < 1.2). With the use of chloride and bromide initiators, the MWDs were broader, whereas the molecular weights were similarly controlled. Other acrylates such as n‐butyl acrylate (nBA) and tert‐butyl acrylate (tBA) can be polymerized with 1 /Fe(Cp)I(CO)2 in the presence of Ti(Oi‐Pr)4 and Al(Oi‐Pr)3, respectively, to give living polymers. The 1 /Fe(Cp)I(CO)2 initiating system is applicable for the synthesis of block and random copolymers of acrylates (MA, nBA, and tBA) and styrene of controlled molecular weights and narrow MWDs (Mw/Mn = 1.2–1.3). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2033–2043, 2002  相似文献   

4.
Novel polyfunctional macroinitiators for atom transfer radical polymerization (ATRP) were obtained via esterification of hyperbranched polyglycerol (PG) (Mn = 4 770 g/mol, Mw/Mn = 1.5) with 2‐bromoisobutyryl bromide. Such macroinitiators were used in the presence of CuBr/pentamethyldiethylenetriamine (PMDETA) to initiate methyl acrylate (MA) polymerization, resulting in multi‐arm block copolymers with polyether core and 45–55 PMA arms. PMA arm length was controlled via monomer/initiator ratio and conversion (< 35%). Polymers were characterized by 1H NMR, 13C NMR, SEC, membrane osmometry and DSC.  相似文献   

5.
The ring‐opening polymerizations (ROPs) of ε‐caprolactone (ε‐CL) and δ‐valerolactone (δ‐VL) with pentafluorophenylbis(triflyl)methane (C6F5CHTf2) as the organocatalyst and alcohol initiators were carried out. For the ROP using 3‐phenyl‐1‐propanol (PPA) as the initiator in CH2Cl2 at room temperature with the [ε‐CL or δ‐VL]0/[PPA]0/[C6F5CHTf2] ratio of 50/1/0.1, the polymerization homogeneously proceeded to afford poly(ε‐caprolactone) (PCL) and poly(δ‐valerolactone) (PVL) having narrow polydispersity indices. The molecular weights of the obtained polymers determined from 1H NMR spectra showed good agreement with those estimated from the initial ratio of [ε‐CL or δ‐VL]0/[PPA]0 and monomer conversions. The 1H NMR, size exclusion chromatography, and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry measurements strongly indicated that PCL and PVL possessed the 3‐phenylpropoxy group as the α‐chain‐end and the hydroxy group as the ω‐chain‐end. In addition, the controlled/living nature for the C6F5CHTf2‐catalyzed ROP of lactones was confirmed by kinetic and chain‐extension experiments. The block copolymerization of PCL and PVL successfully proceeded to afford PCL‐b‐PVL and PVL‐b‐PCL. In addition, various end‐functionalized PCLs and PVLs with narrow molecular weight distributions were synthesized by the ROP of ε‐CL and δ‐VL using functional initiators, such as 6‐azido‐1‐hexanol, 2‐hydroxyethyl methacrylate, propargyl alcohol, N‐(2‐hydroxyethyl)maleimide, 4‐vinylbenzyl alcohol, 5‐hexen‐1‐ol, and 5‐norbornene‐2‐methanol. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
The free‐radical polymerization of methyl acrylate (MA) has been studied in the presence of a novel cyclic dixanthate under γ‐ray irradiation (80 Gy min?1) at room temperature (~28 °C), ?30 °C, and ?76 °C respectively. The resultant polymers have controlled molecular weights and relatively narrow molecular weight distributions, especially at low temperatures (i.e., ?30 and ?76 °C). The polymerization control may be associated with the temperature: the lower the temperature is, the more control there is. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of poly(methyl acrylate) (PMA) samples shows that there are at least three distributions: [3‐(MA)n‐H]+ cyclic polymers, [3‐(MA)n‐THF‐H]+, and [3‐(MA)n‐(THF)2‐H]+ linear PMAs. The relative content of the cyclic polymers markedly increases at a lower temperature, and this may be related to the reduced diffusion rate and the suppressed chain‐transfer reaction at the low temperature. It is evidenced that the good control of the polymerization at the low temperature may be associated with the suppressed chain‐transfer reaction, unlike reversible addition–fragmentation chain transfer polymerization. In addition, styrene bulk polymerizations have been performed, and gel permeation chromatography traces show that there is only one cyclic dixanthate moiety in the polymer chain. This article is the first to report the influence of a low temperature on controlled free‐radical polymerizations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2847–2854, 2007  相似文献   

7.
Polydisperse hyperbranched polyesters were modified for use as novel multifunctional reversible addition–fragmentation chain‐transfer (RAFT) agents. The polyester‐core‐based RAFT agents were subsequently employed to synthesize star polymers of n‐butyl acrylate and styrene with low polydispersity (polydispersity index < 1.3) in a living free‐radical process. Although the polyester‐core‐based RAFT agent mediated polymerization of n‐butyl acrylate displayed a linear evolution of the number‐average molecular weight (Mn) up to high monomer conversions (>70%) and molecular weights [Mn > 140,000 g mol?1, linear poly(methyl methacrylate) equivalents)], the corresponding styrene‐based system reached a maximum molecular weight at low conversions (≈30%, Mn = 45,500 g mol?1, linear polystyrene equivalents). The resulting star polymers were subsequently used as platforms for the preparation of star block copolymers of styrene and n‐butyl acrylate with a polyester core with low polydispersities (polydispersity index < 1.25). The generated polystyrene‐based star polymers were successfully cast into highly regular honeycomb‐structured microarrays. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3847–3861, 2003  相似文献   

8.
The primary use of poly(acrylonitrile) (PAN) fibers, commonly referred to as acrylic fibers, is in textile applications like clothing, furniture, carpets, and awnings. All commercially available PAN fibers are processed by solution spinning; however, alternative, more cost‐effective processes like melt spinning are still highly desired. Here, the melt spinning of PAN‐co‐poly(methyl acrylate) (PMA) plasticized with propylene carbonate (PC) at 175°C is reported. The use of methyl acrylate (MA) as comonomer and PC as an external plasticizer renders the approach a combination of internal and external plasticization. Various mixtures of PAN and PC used in this work were examined by rheology, subjected to melt spinning, followed by discontinuous and continuous washing, respectively. The best fibers were derived from a PAN‐co‐PMA copolymer containing 8.1 mol‐% of MA having a number‐average molecular weight M n of 34 000 g/mol, spun in the presence of 22.5 wt.‐% of PC. The resulting fibers were analyzed by scanning electron microscopy and wide‐angle X‐ray scattering (WAXS), and were subjected to mechanical testing.  相似文献   

9.
An efficient introduction of aromatic vinyl group into syndiotactic polystyrene has been achieved by incorporation of 3,3′‐divinylbiphenyl, p‐divinylbenzene (DVB) in syndiospecific styrene polymerization using aryloxo‐modified half‐titanocenes, Cp′TiCl2(O‐2,6‐iPr2C6H3) (Cp′ = tBuC5H4, 1,2,4‐Me3C5H2), in the presence of MAO. The resultant polymers possessed high molecular weights with uniform molecular weight distributions, and the DVB contents could be varied by the initial feed molar ratios (6–23 mol %) without decrease in the Mn values. The syndiotactic stereo‐regularity and presence of the vinyl groups were confirmed by NMR spectra. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1902–1907  相似文献   

10.
Chromium catalysts combined with phosphorous‐bridged bisphenoxy ligands were found to be highly active for ethylene polymerization. The most efficient catalyst precursor among them, generated by combining bis[3‐tert‐butyl‐5‐methyl‐2‐hydroxyphenyl](phenyl)phosphine hydrochloride ( 1a ) and CrCl3(THF)3, was characterized. X‐ray analysis of (3‐tert‐butyl‐5‐methyl‐2‐phenoxy)(3‐tert‐butyl‐5‐methyl‐ 2‐hydroxyphenyl)(phenyl)phosphine bis(tetrahydrofuran)chromium dichloride ( 6 ), obtained by the reaction of 1a and CrCl3(THF)3 in the presence of NaH, revealed a unique structure in which one phenol moiety of the bisphenol did not coordinate to the chromium center. Complex 6 showed higher activities than those observed in the in situ catalyst system. Polyethylene of various molecular weights was obtained with differing activators. The highest activity (113.5 kg mmol (cat)?1 h?1) was observed when TIBA/TB was used as a cocatalyst. A medium molecular weight polymer with narrow molecular weight distribution (Mw = 128,700, Mw/Mn = 1.8) was obtained using a 6 ‐TIBA/B(C6F5)3 system. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3668–3676, 2007  相似文献   

11.
The organo‐rare‐earth‐metal‐initiated living polymerization of methyl methacrylate (MMA) was first discovered in 1992 with (C5Me5)2LnR (where R is H or Me and Ln is Sm, Yb, Y, or La) as an initiator. These polymerizations provided highly syndiotactic (>96%) poly(methyl methacrylate) (PMMA) with a high number‐average molecular weight (Mn > 1000 × 103) and a very narrow molecular weight distribution [weight‐average molecular weight/number‐average molecular weight (Mw/Mn) < 1.04] quantitatively in a short period. Bridged rare‐earth‐metallocene derivatives were used to perform the block copolymerization of ethylene or 1‐hexene with MMA, methyl acrylate, cyclic carbonate, or ?‐caprolactone in a voluntary ratio. Highly isotactic (97%), monodisperse, high molecular weight (Mn > 500 × 103, Mw/Mn < 1.1) PMMA was first obtained in 1998 with [(Me3Si)3C]2Yb. Stereocomplexes prepared by the mixing of the resulting syndiotactic and isotactic PMMA revealed improved physical properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 1955–1959, 2001  相似文献   

12.
Treatment of the chlorides (L2,6‐iPr2Ph)2LnCl (L2,6‐iPr2Ph = [(2,6‐iPr2C6H3)NC(Me)CHC(Me)N(C6H5)]?) with 1 equiv. of NaNH(2,6‐iPr2C6H3) afforded the monoamides (L2,6‐iPr2Ph)2LnNH(2,6‐iPr2C6H3) (Ln = Y ( 1 ), Yb ( 2 )) in good yields. Anhydrous LnCl3 reacted with 2 equiv. of NaL2,6‐iPr2Ph in THF, followed by treatment with 1 equiv. of NaNH(2,6‐iPr2C6H3), giving the analogues (L2,6‐iPr2Ph)2LnNH(2,6‐iPr2C6H3) (Ln = Sm ( 3 ), Nd ( 4 )). Two monoamido complexes stabilized by two L2‐Me ligands, (L2‐Me)2LnNH(2,6‐iPr2C6H3) (L2‐Me = [N(2‐MeC6H4)C(Me)]2CH)?; Ln = Y ( 5 ), Yb ( 6 )), were also synthesized by the latter route. Complexes 1 , 2 , 3 , 4 , 5 , 6 were fully characterized, including X‐ray crystal structure analyses. Complexes 1 , 2 , 3 , 4 , 5 , 6 are isostructural. The central metal in each complex is ligated by two β‐diketiminato ligands and one amido group in a distorted trigonal bipyramid. All the complexes were found to be highly active in the ring‐opening polymerization of L‐lactide (L‐LA) and ε‐caprolactone (ε‐CL) to give polymers with relatively narrow molar mass distributions. The activity depends on both the central metal and the ligand (Yb < Y < Sm ≈ Nd and L2‐Me < L2,6‐iPr2Ph). Remarkably, the binary 3/benzyl alcohol (BnOH) system exhibited a striking ‘immortal’ nature and proved able to quantitatively convert 5000 equiv. of L‐LA with up to 100 equiv. of BnOH per metal initiator. All the resulting PLAs showed monomodal, narrow distributions (Mw/Mn = 1.06 ? 1.08), with molar mass (Mn) decreasing proportionally with an increasing amount of BnOH. The binary 4/BnOH system also exhibited an ‘immortal’ nature in the polymerization of ε‐CL in toluene. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Copolymerization of ethene and 1,3‐butadiene was conducted over SiO2‐supported CpTiCl3 catalyst using Ph3CB(C6F5)4 or B(C6F5)3 combined with triisobutylaluminium (iBu3Al) or trioctylaluminium (Oct3Al). When the copolymerization was carried out at 0°C, the Ph3CB(C6F5)4/iBu3Al and B(C6F5)3/Oct3Al systems selectively produced copolymers which contained about 0.5–2.5 mol‐% of trans‐1,4‐inserted butadiene units. The number‐average molecular weight (Mn) of the copolymers was around 80 000 with polydispersities in the range from 6 to 8. Oxidative degradation of the vinylene units with potassium permanganate decreased the Mn values to several thousands with polydispersities of ca. 2. This indicates that the butadiene units are randomly distributed in the copolymers. NMR analysis clarified that the decomposed product is a polyethene with carboxyl groups at both chain ends.  相似文献   

14.
Living radical polymerization (LRP) of methyl acrylate (MA), acrylic acid (AA), and vinyl acetate (VAc) mediated by cobalt(II) porphyrin complexes ((TMP)CoII·, (TMPS)CoII·) are reported. The polymeric products with relatively low polydispersity and controlled number average molecular weight (Mn) based on one polymer chain per cobalt complex demonstrate the living characters of the polymerization process. The formation of block copolymers of poly(methyl acrylate)‐b‐poly(vinyl acetate) (PMA‐b‐PVAc) and poly(methyl acrylate)‐b‐poly(vinyl pyrrolidone) (PMA‐b‐PVP) demonstrate another important feature of LRP and extend the application of cobalt porphyrin mediated radical polymerization to a wider array of functionalized monomers. Kinetic studies using 1H NMR to follow the formation of orGano‐cobalt complexes reveal that two mechanisms, reversible termination (RT) and degenerative transfer (DT), occur during the polymerization process. MA and VAc polymerization mediated by cobalt porphyrin complexes are used to illustrate the properties of these two LRP pathways and evaluate the kinetic and thermodynamic properties for several of the central reactions.  相似文献   

15.
Reaction of 7‐{(N‐2,6‐R)iminomethyl)}indole ( HL1 , R = dimethylphenyl; HL2 , R = diisopropylphenyl) and rare‐earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2, generated new rare‐earth metal bis(alkyl) complexes LLn(CH2SiMe3)2(THF) [L = L1: Ln = Lu ( 1a ), Sc ( 1b ); L = L2: Ln = Lu ( 3a ), Sc ( 3b )] and mono(alkyl) complexes L22Lu(CH2SiMe3) ( 4a ). Treatment of alkyl complexes 1a and 4a with N,N′‐diisopropylcarbodiimide afforded the corresponding amidinates L1Lu{iPr2NC(CH2SiMe3)NiPr2}2 ( 2a ) and L22Lu{iPr2NC(CH2SiMe3)NiPr2} ( 5a ), respectively. These new rare‐earth metal alkyls and amidinates except 4a in combination with aluminum alkyls and borate generated efficient homogeneous catalysts for the polymerization of isoprene, providing high cis‐1,4 selectivity and high molar mass polyisoprene with narrow molar mass distribution (Mn = 2.65 × 105, Mw/Mn = 1.07, cis‐1,4 98.2%, −60 °C). The environmental hindrance around central metals arising from the bulkiness of the ligands, the Lewis‐acidity of rare‐earth metal ions, the types of aluminum tris(alkyl)s and borate, and polymerization temperature influenced significantly on both the catalytic activity and the regioselectivity. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5251–5262, 2008  相似文献   

16.
A series of functionalized 2‐bromoisobutyrates and 2‐chloro‐2‐phenylacetates led to α‐end‐functionalized poly(methyl methacrylate)s in Ru(II)‐catalyzed living radical polymerization; the terminal functions included amine, hydroxyl, and amide. These initiators were effective in the presence of additives such as Al(Oi‐Pr)3 and n‐Bu3N. The chlorophenylacetate initiators especially coupled with the amine additive gave polymers with well‐controlled molecular weights (Mw/Mn = 1.2–1.3) and high end functionality (Fn ~ 1.0). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1937–1944, 2002  相似文献   

17.
Aryloxo‐modified half‐titanocenes, Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* ( 1 ), tBuC5H4 ( 2 )], catalyze terpolymerization of ethylene and styrene with α‐olefin (1‐hexene and 1‐decene) efficiently in the presence of cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions (compositions). Efficient comonomer incorporations have been achieved by these catalysts. The content of each comonomer (α‐olefin, styrene, etc.) could be controlled by varying the comonomer concentration charged, and resonances ascribed to styrene and α‐olefin repeated insertion were negligible. The terpolymerization with p‐methylstyrene (p‐MS) in place of styrene also proceeded in the presence of [PhN(H)Me2][B(C6F5)4] and AliBu3 cocatalyst, and p‐MS was incorporated in an efficient matter, affording high‐molecular‐weight polymers with uniform molecular weight distributions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2565–2574  相似文献   

18.
Ethylene polymerizations were performed using catalyst based on titanium tetrachloride (TiCl4) supported on synthesized poly(methyl acrylate‐co‐1‐octene) (PMO). Three catalysts were synthesized by varying TiCl4/PMO weight ratio in chlorobenzene resulting in incorporation of titanium in different percentage as determined by UV‐vis spectroscopy. The coordination of titanium with the copolymer matrix was confirmed by FTIR studies. The catalysts morphology as observed by SEM was found to be round shaped with even distributions of titanium and chlorine on the surface of catalyst. Their performance was evaluated for atmospheric polymerization of ethylene in n‐hexane using triethylaluminum as cocatalyst. Catalyst with titanium incorporation corresponding to 2.8 wt % showed maximum activity. Polyethylenes obtained were characterized for melting temperature, molecular weight, morphology and microstructure. The polymeric support utilized for TiCl4 was synthesized using activators regenerated by electron transfer (ARGET) Atom Transfer Radical Polymerization (ATRP) of methyl acrylate (MA) and 1‐octene (Oct) with Cu(0)/CuBr2/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalyst and ethyl 2‐bromoisobutyrate (EBriB) as initiator at 80 °C. The copolymer poly(methyl acrylate‐1‐octene; PMO) obtained showed monomodal curve in Gel Permeation Chromatography (GPC) with polydispersity of 1.37 and copolymer composition (1H NMR; FMA) of 0.75. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7299–7309, 2008  相似文献   

19.
This paper presents an extensive study of the polymerization of MMA with borohydrido lanthanide complexes for the first time. Catalytic systems are made from a lanthanide derivative bearing zero one, or two bulky ligands: substituted cyclopentadienyl (Cp*′ = C5Me4nPr, Cp4i = C5HiPr4, CpPh3 = H2C5Ph3‐1,2,4), and/or diketiminate ([(p‐tol)NN] = [(p‐CH3C6H4)N(CH3)C]2CH), in the presence of variable quantities of alkylating agent. With BuLi in apolar medium, highly isotactic polymer (up to 95.6%) is formed. In THF, syndiotactic‐rich PMMA is obtained whatever the nature of the co‐catalyst (BuLi or MgnBu2). The presence of an electron‐withdrawing ligand such as CpPh3 allows high syndioregularity, up to 81.8% at 0 °C, together with the highest conversion. There is quite good concordance between calculated and experimental molecular data in THF. Divalent Cp*′2SmII(THF) and (CpPh3)2SmII(THF) are active as single‐component initiators; the former affords PMMA 88% syndiotactic at 0 °C. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Ring‐opening polymerization of cyclic esters was studied using catalysts composed of bulky Lewis acids (LA) and Lewis bases (LB). Controlled polymerization of l ‐lactide (l ‐Lac) was proceeded by Al(C6F5)3·THF in combination with trimesitylphosphine (Mes3P) or triphenylphosphine (Ph3P) using BnOH as an initiator to produce poly(l ‐Lac) with narrow molecular weight distribution (MWD; Mw/Mn = 1.1). Both the LA and the LB were indispensable to promote the polymerization. The molecular weights of the resulting poly(l ‐Lac)s were controlled by the feed monomer to initiator ratio. ε‐Caprolactone (CL) was rapidly polymerized by Al(C6F5)3·THF with or without Mes3P, although the resulting polymer had rather broad MWD (Mw/Mn = 1.7). The CL polymerization by Al(C6F5)3·THF alone at r.t. gave poly(CL) with relatively narrow MWD (Mw/Mn = 1.2). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 297–303  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号