首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study demonstrates that adding clay that was organically modified by dimethyldioctadecylammonium chloride (DDAC) and d2000 surfactants increases the ionic conductivity of polymeric electrolyte. A.C. impedance, differential scanning calorimetric (DSC), and Fourier transform infrared (FTIR) studies revealed that the silicate layers strongly interact with the dopant salt lithium perchlorate (LiClO4) within a poly(ethylene oxide) (PEO)/clay/LiClO4 system. DSC characterization verified that the addition of a small amount of the organic clay reduces the glass‐transition temperature of PEO as a result of the interaction between the negative charge in the clay and the lithium cation. Additionally, the strength of such a specific interaction depends on the extent of PEO intercalation. With respect to the interaction between the silicate layer and the lithium cation, three types of complexes are assumed. In complex I, lithium cation is distributed within the PEO phase. In complex II, lithium cation resides in an PEO/exfoliated‐clay environment. In complex III, the lithium cation is located in PEO/agglomerated‐clay domains. More clay favors complex III over complexes II and I, reducing the interaction between the silicate layers and the lithium cations because of strong self‐aggregation among the silicate layers. Notably, the (PEO)8LiClO4/DDAC‐modified clay (DDAC‐mClay) composition can form a nanocomposite electrolyte with high ionic conductivity (8 × 10?5 S/cm) at room temperature. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1342–1353, 2002  相似文献   

2.
Composite polymer electrolyte films comprising polyethylene oxide (PEO) as the polymer host, LiClO4 as the dopant, and NiO nanoparticle as the inorganic filler was prepared by solution casting technique. NiO inorganic filler was synthesized via sol-gel method. The effect of NiO filler on the ionic conductivity, structure, and morphology of PEO-LiClO4-based composite polymer electrolyte was investigated by AC impedance spectroscopy, X-ray diffraction, and scanning electron microscopy, respectively. It was observed that the conductivity of the electrolyte increases with NiO concentration. The highest room temperature conductivity of the electrolyte was 7.4?×?10?4 S cm?1 at 10 wt.% NiO. The observation on structure shows the highest conductivity appears in amorphous phase. This result has been supported by surface morphology analysis showing that the NiO filler are well distributed in the samples. As a conclusion, the addition of NiO nanofiller improves the conductivity of PEO-LiClO4 composite polymer electrolyte.  相似文献   

3.
Details on the structure and transport characteristics of the solid polymer electrolyte polyethylene oxide (PEO)/lithium salt (LiClO4) modified by novolac phenolic resin are presented here. From IR spectra it could be concluded that complex formation occurred through multiple interactions between the ether oxygen of PEO–lithium, phenolic lithium, and the phenolic ether oxygen of PEO. The free hydroxyl band in phenolic reflected that phenolic closely interacted with both the PEO polymer and ionic salt. With increasing salt content in PEO, the vibration band corresponding to the ClO anion (~623 cm?1) displayed growth of a shoulder at ~635 cm?1, suggesting the formation of Li+…ClO4? ion pairing. However, in the presence of phenolic, ion‐pairing formation was effectively suppressed, which suggested that the phenolic moiety facilitated a greater degree of LiClO4 salt dissociation. Activation energy analysis revealed two conducting pathways: one through the amorphous PEO and the other through the PEO/phenolic amorphous matrix. The high ion conductivity originated from effective salt dissociation and the establishment of a new conduction network formed by PEO and phenolic. Furthermore, the structural modification also extended the thermal stability and mechanical strength of the solid polymer electrolyte composite. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3866–3875, 2004  相似文献   

4.
A series of copolymers of predominantly poly(ethylene oxide) (PEO) with biphenyl (BP) units in the backbone were synthesized. The solid polymer electrolytes (SPEs) were prepared from these copolymers (BP-PEG) employing lithium perchlolate (LiClO4) as a lithium salt and their ionic conductivities were investigated to exploit the structure–ionic conductivity relationships as a function of chain length ratio between the flexible PEO chains and rigid BP units. The ionic conductivity increases with increasing PEO length in BP-PEG. The salt concentrations in BP-PEG/LiClO4 complexes were also changed and the results show that maximum conductivity is obtained at [EO]/[Li+]≈8. The reasons for these findings are discussed in terms of the number of charge carriers and the mobility of the polymer chain.  相似文献   

5.
The occurrence of a molecular complex between poly(ethylene oxide) (PEO) and p‐dihydroxybenzene (hydroquinone) has been determined using different experimental techniques such as differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FTIR). From DSC investigations, an ethylene oxide/hydroquinone molar ratio of 2/1 was deduced. During the heating, the molecular complex undergoes a peritectic reaction and spontaneously transforms into a liquid phase and crystalline hydroquinone (incongruent melting). A triclinic unit cell (a = 1.17 nm, b = 1.20 nm, c = 1.06 nm, α = 78°, β = 64°, γ = 115°), containing eight ethylene oxide (EO) monomers and four hydroquinone molecules, has been determined from the analysis of the X‐ray diffraction fiber patterns of stretched and spherulitic films. The PEO chains adopt a helical conformation with four monomers per turn, which is very similar to the 72 helix of the pure polymer. A crystal structure is proposed on the basis of molecular packing considerations and X‐ray diffraction intensities. It consists of a layered structure with an alternation of PEO and small molecules layers, both layers being stabilized by an array of hydrogen bonds. The morphology of PEO–HYD crystals was studied by small angle X‐ray scattering and DSC. As previously shown for the PEO–resorcinol complex, PEO–HYD samples crystallize with a lamellar thickness corresponding to fully extended or integral folded chains. The relative proportion of lamellae with different thicknesses depends on the crystallization temperature and time. Finally, the observed morphologies are discussed in terms of intermolecular interactions and chain mobility. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1197–1208, 1999  相似文献   

6.
Effects of a strong‐interacting amorphous polymer, poly(4‐vinyl phenol) (PVPh), and an alkali metal salt, lithium perchlorate (LiClO4), on the amorphous and crystalline domains in poly(ethylene oxide) (PEO) were probed by differential scanning calorimetry (DSC), optical microscopy (OM), and Fourier transform infrared spectroscopy (FTIR). Addition of lithium perchlorate (LiClO4, up to 10% of the total mass) led to enhanced Tg's, but did not disturb the miscibility state in the amorphous phase of PEO/PVPh blends, where the salt in the form of lithium cation and ClO anion was well dispersed in the matrix. Competitive interactions between PEO, PVPh, and Li+ and ClO ions were evidenced by the elevation of glass transition temperatures and shifting of IR peaks observed for LiClO4‐doped PEO/PVPh blend system. However, the doping distinctly influenced the crystalline domains of LiClO4‐doped PEO or LiClO4‐doped PEO/PVPh blend system. LiClO4 doping in PEO exerted significant retardation on PEO crystal growth. The growth rates for LiClO4‐doped PEO were order‐of‐magnitude slower than those for the salt‐free neat PEO. Dramatic changes in spherulitic patterns were also seen, in that feather‐like dendritic spherulites are resulted, indicating strong interactions. Introduction of both miscible amorphous PVPh polymer and LiClO4 salt in PEO can potentially be a new approach of designing PEO as matrix materials for electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3357–3368, 2006  相似文献   

7.
Polymer electrolytes, (PEO:LiClO4)+x IL (1‐Buty‐3‐methylimidazolium hexafluorophosphate) with varying concentration of IL; x = 0,5,10,15,20 wt % have been prepared by solution cast technique and characterized by X‐Ray diffraction, differential scanning calorimetery, FTIR, conductivity and dielectric relaxation measurements in the frequency range of 100 Hz–5 MHz. Temperature dependence of relaxation frequency and conductivity were found to be typical of thermally activated process both at T > Tm and T < Tm. Composition dependence of conductivity, dielectric relaxation, and degree of crystallinity has also been studied. On addition of IL, the degree of crystallinity after a decrease at 5 wt % IL increases slightly at 10 wt % and then finally decreasing. Variation of conductivity and relaxation frequency with composition could only be partly explained on the basis of variation of degree of crystallinity. An additional feature of ion–ion interaction (contact ion pair formation between IL or salt cations and their associated anions) has been invoked which was supported by FTIR studies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

8.
Amphiphilic graft copolymers were prepared via the radical copolymerization of poly(ethylene oxide) (PEO) macromonomers with fluorocarbon or hydrocarbon acrylates in toluene with 2,2′‐azobisisobutyronitrile (AIBN) as an initiator. 1H NMR spectroscopy confirmed that the composition of the graft copolymers corresponded well to the monomer feed. For gel electrolytes prepared from the amphiphilic copolymers, the nature of the ionophobic parts of the amphiphilic graft copolymers had a great influence on the ion conductivity. Gel electrolytes based on graft copolymers containing fluorocarbon side chains showed significantly higher ion conductivity than electrolytes based on graft copolymers containing hydrocarbon groups. The ambient‐temperature ion conductivity was about 2.6 mS/cm at 20 °C for a gel electrolyte based on an amphiphilic graft copolymer consisting of an acrylate backbone carrying PEO and fluorocarbon side chains. Corresponding gels based on graft copolymers with PEO side chains and hydrocarbon groups showed an ambient‐temperature ion conductivity of about 1.2 mS/cm. The gel electrolytes contained 30 wt % copolymer and 70 wt % 1 M LiPF6 in an ethylene carbonate/γ‐butyrolactone (2/1 w/w) mixture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2223–2232, 2001  相似文献   

9.
Poly(ethylene oxide) (PEO)/LiClO4/poly(vinyl acetate) (PVAc) and PEO/LiClO4/poly(vinyl pyrrolidone) (PVP) complexes were prepared with various weight ratios of PVAc and PVP to PEO. The conductivity (σ) of the PEO/LiClO4 complex was increased in a nonlinear fashion by the presence of up to 60 wt% PVAc. PEO/LiClO4/PVAc complexes with weight percents of PVAc greater than 60 had σ's less than that of PEO/LiClO4. The σ of PEO/LiClO4 was decreased by the presence of any PVP.  相似文献   

10.
Recent reports have indicated higher ionic conductivities in crystalline polymer electrolytes consisting of isostructural P(EO)6:LiX (X=PF6, AsF6, SbF6) phases relative to the analogous amorphous materials. These reports challenge the conventional wisdom in polymer electrolyte research that amorphous electrolytes are much more conductive than crystalline ones. The higher conductivity in the crystalline materials was attributed to the structures in which Li+ cations are located within PEO cylinders uncoordinated by the anions. The conductivity and crystallinity of P(EO)n–LiClO4 (EO/Li=6 and 10) electrolytes have been examined here. In contrast to the recent reports, much lower conductivities are found for the isostructural P(EO)6:LiClO4 crystalline electrolyte relative to the same fully amorphous electrolyte.  相似文献   

11.
In this study, the composite polymer electrolytes (CPEs) were prepared by solution casting technique. The CPEs consisted of PEO/PMMA blend as a host matrix doped with LiClO4. Propylene carbonate (PC) was used as plasticizer and a small amount of imidazolium salt-supported amorphous silica (IS-AS) as a filler was prepared by the sol–gel method. At room temperature, the highest conductivity was obtained for the composition having PEO–PMMA–LiClO4–PC–4wt. % IS-AS with a value of 1.15 × 10?4 S/cm. In particular, the CPE using the IS-AS filler showed a higher conductivity than any other sample (fumed silica, amorphous silica). Studies of differential scanning calorimetry and scanning electron microscopy indicated that the ionic conductivity increase was due to an expansion in the amorphous phase which enhances the flexibility of polymeric chains and the homogeneous structure of CPEs. It was found that the ionic conductivity and interfacial resistance stability of CPEs was significantly improved by the addition of IS-AS. In other words, the resistance stability and maximum ambient ionic conductivity of CPEs containing IS-AS filler were better than CPEs containing any other filler.  相似文献   

12.
The effect of electron‐beam (4–8 MeV) irradiation on the ionic conductivity of a solid polymer electrolyte, poly(ethylene glycol) complexed with LiClO4, was studied. A large enhancement of the conductivity of nearly two orders of magnitude was observed for the highest dose of irradiation (15 kGy) used. The samples were characterized with differential scanning calorimetry, matrix‐assisted laser desorption/ionization, and electron spin resonance spectroscopy. Although no free radicals were present in the irradiated samples, a decrease in the glass‐transition temperature and an increase in the amorphous fraction were observed. Even though pure poly(ethylene glycol) underwent considerable fragmentation, unexpectedly, no significant fragmentation was observed in the polymer–salt complexes. The enhancement of the conductivity was attributed to an increase in the amorphous fraction of the systems and also to an increase in the flexibility of the polymer chains due to the irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1299–1311, 2004  相似文献   

13.
Solid polymer electrolytes of PEO/LiClO4 and PEO/LiTFSI solution casting films were prepared with the EO/Li molar ratio of 3: 1, and the effect of relative humidity (RH) on their complex structures were characterized. It is shown that the complex structures were barely changed at RH ≤ 10% while severe differences were shown at RH ≥ 20%. The reason was attributed to the interactions of water with lithium salt, and the formation of PEO–Li+–H2O decreased the interactions between PEO and lithium ions. Furthermore, it was shown that the hydrated samples after heat treatment were still strikingly different in characters from their anhydrous precursors, and the type of lithium salt affected the final structures. It was found that the structure of (PEO)3LiClO4 (30% RH) was hardly changed after heating; however, an irreversible compositional transition was discovered in (PEO)3LiTFSI (30% RH) in which case (PEO)2LiTFSI was formed.  相似文献   

14.
A polylactide of high optical purity was crystallized between 100 and 140 °C, in‐between two glass slides, and its morphology was investigated by polarizing optical microscopy, scanning electron microscopy, and atomic force microscopy, during subsequent heating and cooling cycles between ?15 °C and the crystallization temperature. It was found that dark circular rings show up on cooling on top of the spherulites and represent cracks of about 300 nm in width. This phenomenon is completely reversible, and the heating–cooling curves are centered at about 56 °C, which coincide with the Tg of polylactide. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3308–3315, 2005  相似文献   

15.
Polymer electrolytes are of tremendous importance for applications in modern lithium‐ion (Li+‐ion) batteries due to their satisfactory ion conductivity, low toxicity, reduced flammability, as well as good mechanical and thermal stability. In this study, the Li+‐ion conductivity of well‐defined poly(ethylene oxide) (PEO) networks synthesized via copper(I)‐catalyzed azide–alkyne cycloaddition is investigated by electrochemical impedance spectroscopy after addition of different lithium salts. The ion conductivity of the network electrolytes increases with increasing molar mass of the PEO chains between the junction points which is completely opposite to the behavior of their respective uncrosslinked linear precursors. Obviously, this effect is directly related to the segmental mobility of the PEO chains. Furthermore, the ion conductivity of the network electrolytes under investigation increases also with increasing size of the anion of the added lithium salt due to a weaker anti‐plasticizing effect of the more bulky anions. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 21–28  相似文献   

16.
Composite polymer electrolyte (CPE) films consisting of PEO, LiClO4, and Li1.3Al0.3Ti1.7(PO4)3 with fixed EO/Li = 8 but different relative compositions of the two lithium salts were prepared by the solution casting method. The CPE films were characterized using SEM, DSC, electrical impedance spectroscopy (EIS), and ion transference number measurement. It was found that the incorporation of LiClO4 and Li1.3Al0.3Ti1.7(PO4)3 into PEO by keeping EO/Li = 8 reduced the crystallinity of PEO from 50.34% to the range of 3.57–15.63% depending upon the relative composition of the two salts. The room temperature impedance spectra of the CPE films all exhibited a shape of depressed semicircle in the high frequency range and inclined line in the low frequency range, but the high temperature ones were mainly inclined lines. The Li+ ionic conductivity of the CPE films mildly increased and then decreased with increasing Li1.3Al0.3Ti1.7(PO4)3 content, and the maximum conductivities were obtained at Li1.3Al0.3Ti1.7(PO4)3 content of 15 wt % for all measuring temperatures, for example, 1.378 × 10?3 S/cm at 100 °C and 1.387 × 10?5 S/cm at 25 °C. The temperature dependence of the ionic conductivity of the CPE films follows the Vogel–Tamman–Fulcher (VTF) equation The pseudo activation energies (Ea) were rather low, 0.053–0.062 eV, indicating an easy migration of Li+ in the amorphous phase dominant PEO. The pre‐exponent constant A and ion transference number tLi+ were found to have a similar variation tendency with increasing Li1.3Al0.3Ti1.7(PO4)3 content and reached their maximums also at Li1.3Al0.3Ti1.7(PO4)3 content of 15 wt %. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 743–751, 2005  相似文献   

17.
A new type of single-ion conductor with fixed cation was synthesized by spontaneous anionic polymerization of 4-vinylpyridine in the presence of short polyethylene oxide ( PEO ) chains as alkylating agents. These comblike polymers have low Tgs and are amorphous with the shorter PEO s. Their conductivities are unaffected by the nature of the anion ( Br , ClO 4, and tosylate) and are controlled by the free volume and the mobility of the pendant cation. By comparison of the results at constant free volume, it is shown that the charge density decreases with the increasing length of pendant PEO demonstrating that PEO acts only as a plasticizing agent. Best conductivity results (σ = 10−5 S cm−1 at 60°C) are obtained with PEO side chains of molecular weight 350. With this sample, the conductivity in the presence of various amounts of added salt (LiTFSI) was studied. A best value of 10−4 S cm−1 at 60°C is obtained with a molar ratio EO/Li of 10. It is shown that, over the range of examined concentrations (0.2–1.3 mol Li kg−1), the reduced conductivity σr/c increases linearly with increasing salt concentration showing that the ion mobility increases continuously. Such behavior is quite unusual since in this concentration range a maximum is generally observed with PEO systems. To interpret this result and by analogy with the behavior of this type of polymer in solution, it is proposed that the conformation of these polymers in the solid state is segregated with the P4VP skeleton more or less confined inside the dense coils surrounded by the PEO side chains. Under the influence of the increasing salt concentration, this microphase separation vanishes progressively: The LiTFSI salt exchanges with the tosylate anions and acts as a miscibility improver agent. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2719–2728, 1997  相似文献   

18.
The graft polymer poly(ethylene oxide)‐g‐poly(?‐caprolactone)2 (PEO‐g‐PCL2) with modulated grafting sites was synthesized by the combination of ring‐opening polymerization (ROP) mechanism, efficient Williamson reaction, with thiol–ene addition reaction. First, the precursor of PEO‐Allyl‐PEO with two terminal hydroxyl groups and one middle allyl group was prepared by ROP of EO monomers. Then, the macroinitiator [PEO‐(OH)2‐PEO]s was synthesized by sequential Williamson reaction between terminal hydroxyl groups and thiol–ene addition reaction on pendant allyl groups. Finally, the graft polymer PEO‐g‐PCL2 was obtained by ROP of ?‐CL monomers using [PEO‐(OH)2‐PEO]s as macroinitiator. The target graft polymer and all intermediates were well characterized by the measurements of gel permeation chromatography, 1H NMR, and thermal gravimetric analysis. The crystallization behavior was investigated by the measurements of differential scanning calorimetry, wide‐angle X‐ray diffraction and polarized optical microscope. The results showed that when the PCL content of side chains reached 59.2%, the crystalline structure had been dominated by PCL part and the crystalline structure formed by PEO part can be almost neglected. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2239–2247  相似文献   

19.
Characterizations were carried out to study on a new plasticized solid polymer electrolyte that was composed of blends of poly(vinyl chloride) (PVC), liquid 50% epoxidized natural rubber (LENR50), ethylene carbonate, and polypropylene carbonate. This freestanding solid polymer electrolyte (SPE) was successfully prepared by solution casting technique. Further analysis and characterizations were carried out by using scanning electron microscopy (SEM), X-ray diffraction, differential scanning calorimeter (DSC), Fourier transform infrared (ATR-FTIR), and impedance spectroscopy (EIS). The SEM results show that the morphologies of SPEs are compatible with good homogeneity. No agglomeration was observed. However, upon addition of salt, formation of micropores occurred. It is worth to note that micropores improve the mobility of ions in the SPE system, thus increased the ionic conductivity whereas the crystallinity analysis for SPEs indicates that the LiClO4 salt is well complexed in the plasticized PVC-LENR50 as no sharp crystallinity peak was observed for 5–15% wt. LiClO4. This implies that LiClO4 salt interacts with polymer host as more bonds are form via coordination bonding. In DSC study, it is found that the glass temperature (T g) increased with the concentration of LiClO4. The lowest T g was obtained at 41.6 °C when incorporated with 15% wt. LiClO4. The features of complexation in the electrolyte matrix were studied using ATR-FTIR at the peaks of C=O, C–O–C, and C–Cl. In EIS analysis, the highest ionic conductivity obtained was 1.20?×?10?3 S cm?1 at 15% wt. LiClO4 at 353 K.  相似文献   

20.
Longitudinal relaxation of proton magnetisation was used to characterize the molecular motions of PEO chains in compatible PEO (hydrogenated)/PMMA (deuterated) blends. Both the temperature and the PEO concentration, Φ, were varied. A maximum in the spin–lattice relaxation rate was observed and its properties were analyzed as a function of Φ. For Φ ≤ 0.50, the maximum is observed below the glass transition temperature of the blend; this shows that PEO chains dispersed in a matrix of PMMA remain highly mobile on a local scale even below Tg(Φ). A frequency–temperature correspondence procedure, applied to the measurements performed at two Larmor frequencies, 32 and 60 MHz, leads to a characteristic correlation time for PEO molecular motions. Its temperature dependence obeys a WLF free volume relation above the glass transition of the blends. The PEO free volume fraction and its thermal expansion are strongly reduced by the presence of the PMMA chains. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1095–1105, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号