首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rates of reduction of Eu3+ and Cr3+ have been measured in mixed perchlorate + thiocyanate electrolytes at constant ionic strength, using low concentrations of thiocyanate to minimize its association with the cationic reactants. The effect of adsorbed thiocyanate anions on the reduction kinetics of Cr3+ resembled those produced by iodide and bromide on both Cr3+ and Eu3+. However, thiocyanate exhibited an unusual catalytic effect on the reduction of Eu3+ which was identified as arising from a reaction pathway involving thiocyanate-bridging between the mercury surface and the Eu3+. The diagnostic criteria used to support the proposed mechanism included analysis of the rate—potential behavior and of the effects of competitively adsorbed iodide ions upon the reduction rates.  相似文献   

2.
The kinetics of the reduction of Eu3+ and Cr3+ at mercury electrodes in various sodium and lanthanum perchlorate supporting electrolytes have been studied over as large a potential range as possible by using both chronocoulometry and d.c. polarography. The objective was to determine the effect of the diffuse double layer upon the reduction rates of these members of the simplest class of electrode reactions in the absence of specific adsorption. Possible additional influences from perchlorate specific adsorption, ion-pairing, and ionic strength-dependent formal potentials, and differences between the site of reaction and the o.H.p. were also considered. The effects of specific adsorption of an uncharged molecule were assessed by noting the changes in the reduction kinetics of Eu3+ caused by the adsorption of thiourea.The classical Gouy-Chapman-Stern model of the double layer was found to give an adequate account of the behavior in relatively dilute lanthanum perchlorate solutions, but it failed badly in more concentrated sodium perchlorate media. Better agreement resulted if the statistical theory due to Krylov and Levich was employed but some discrepancies remained. The diffuse-layer properties evaluated here represent a useful basis for comparisons with systems where specific ionic adsorption of components of the supporting electrolyte adds a second component to the electrode surface charge density which determines the diffuse-layer potential.  相似文献   

3.
The cyclic voltammetric behaviour of Eu3+/Eu2+ couple at hanging mercury drop electrode (HMDE) has been studied in chloride, bromide, iodide, thiocyanate and EDTA supporting electrolytes. The apparent rate constant and transfer coefficient for these systems have been calculated at various voltage scan rates, without using the data for standard or formal potential. The values have been compared with those obtained by earlier workers through other electrochemical methods.  相似文献   

4.
Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses were prepared using the melt-quenching process and analyzed by X-diffraction, Raman spectroscopy, excitation and emission spectra, and emission decay time profiles. The lack of X ray diffraction peaks revealed that all samples are amorphous. Vibrational modes associated with TeOTe and GeOGe related bonds and molecular oxygen were detected by Raman spectroscopy. The luminescence characteristics were studied upon excitations that correspond with the emission of InGaN (370–420 nm) based LEDs. The Eu3+ singly doped glass displayed reddish-orange global emission, with x = 0.601 and y = 0.349 CIE1931 chromaticity coordinates, upon 393 nm excitation. Neutral emission with x = 0.373 and y = 0.412 CIE1931 chromaticity coordinates and correlated color temperature (CCT) of 4400 K, was achieved in the Dy3+ singly doped glass excited at 388 nm. The Dy3+/Eu3+ co-doped glass exhibited warm, neutral and soft warm white emissions with CCT values of 3435, 4153 and 2740 K, under excitations at 382, 388 and 393 nm, respectively, depending mainly on the Dy3+ and Eu3+ relative excitation. The Dy3+ excitation bands observed in the Dy3+/Eu3+ glass by monitoring the 611 nm Eu3+ emission, suggest that Dy3+ → Eu3+ energy transfer takes place, despite the fact that the Dy3+ emission decays in the Dy3+ and Dy3+/Eu3+ doped glass, remain without changes. The shortening of Eu3+ decay in presence of Dy3+ was attributed to an Eu3+ → Dy3+ non-radiative energy transfer process, which according with the Inokuti-Hirayama model might be dominated through an electric quadrupole-quadrupole interaction, with efficiency and probability of 5.5% and 51.6 s−1, respectively.  相似文献   

5.
TiO2 nanoparticles deposited on activated carbon (TiO2–NP–AC) was prepared and characterized by XRD and SEM analysis. Subsequently, simultaneous ultrasound‐assisted adsorption of Cu2+ and Cr3+ ions onto TiO2‐NPs‐AC after complexation via eriochrome cyanine R (ECR) has been investigated with UV–Vis and FAA spectrophotometer. Spectra overlapping of the ECR‐Cu and ECR‐Cr complex was resolve by derivative spectrophotometric technique. The effects of various parameters such as initial Cu2+ (A) and Cr3+ (B) ions concentrations, TiO2‐NPs‐AC mass (C), sonication time (D) and pH (E) on the removal percentage were investigated and optimized by central composite design (CCD). The optimize conditions were set as: 4.21 min, 0.019 mg, 20.02 and 13.22 mg L?1 and 6.63 for sonication time, TiO2–NP–AC mass, initial Cr3+ and Cu2+ ions concentration and pH, respectively. The experimental equilibrium data fitting to Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption process and maximum adsorption capacity of 105.26 and 93.46 mg g?1 were obtained for Cu2+ and Cr3+ ions, respectively. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo second order and intraparticle diffusion models.  相似文献   

6.
The critical concentration for quenching of the Eu3+ luminescence is calculated theoretically for several Gd3+ : Eu3+ systems. A comparison is made with the experimental values. The results are discussed in terms of energy migration.  相似文献   

7.
Developing multiplex sensing technique is of great significance for fast sample analysis. However, the broad emissions of most chemiluminescence(CL) luminophores make the multiplex CL analysis be difficult. In this work, a simple and sensitive CL analytical method has been developed for the simultaneous determination of Tb3+and Eu3+thanking to their narrow band emission. The technique was based on a mixed CL system of periodate(IO4-)-hydrogen peroxide(...  相似文献   

8.
Well-dispersed Eu3+ and Sr2+ co-doped YVO4 luminescent particles (YVO4:Eu3+,Sr2+) on the submicron scale were prepared by a facile solvothermal method at low temperature. The effect of Sr2+ doping on the luminescence of YVO4:Eu3+,Sr2+ particles was investigated by fixing the Eu3+ doping concentration at 7 mol%. It was found that the luminescence intensity of the as-prepared YVO4:Eu3+,Sr2+ particles increased with the Sr2+ doping concentration x to reach a two-fold enhancement when x = 5 %, and then decreased for higher x. We also investigated the effect of thermal annealing on the luminescence properties of the YVO4:Eu3+ and YVO4:Eu3+,Sr2+ particles. A remarkable enhancement in their luminescence properties was observed after annealing at 900 °C in air for 30 min. It was showed that the annealed YVO4:Eu3+,Sr2+ particles exhibited a two-fold stronger emission than the annealed YVO4:Eu3+. This work indicates that Sr2+ doping is beneficial to the luminescence enhancement for both the as-prepared and annealed YVO4:Eu3+,Sr2+ particles.  相似文献   

9.
By using a hydrothermal method, a series of Eu3+ concentration dependent GdF3 nanocrystals have been synthesized. The crystalline structures of samples are characterized by XRD patterns, the morphology and size of the samples are illustrated by FE-SEM images, and the optical properties of the samples are presented by PL excitation and emission spectra. The energy transfer from host Gd3+ to Eu3+ is observed in the Eu3+ doped GdF3 nanocrystals. The optical properties of Eu3+ and the energy transfer efficiency from host Gd3+ to Eu3+ are discussed on the basis of the Eu3+ concentration dependent integrated PL excitation and emission spectra of Gd3+ and Eu3+. The discussion on optical properties of Eu3+ and the energy transfer from Gd3+ to Eu3+ is meaningful to design and synthesize Gd3+ based compounds.  相似文献   

10.
Two new three‐dimensional (3D) LnIII metal‐organic frameworks (MOFs) were designed and successfully obtained via a solvothermal reaction between lanthanide(III) nitrates and a semi‐flexible carbazole tetracarboxylate acid linker as a high‐performance chromophore. 1 and 2 possess porous 3D networks with channels along the a axis, and more importantly, they show a highly sensitive and selective fluorescence quenching response to Fe3+ and CrVI anions. The sensing mechanism investigation revealed that the weak interactions of Fe3+ with nitrogen atoms of carbazole and deprotonated carboxylic acids protruding into the pores of MOFs quenched the luminescence of 1 and 2 effectively. In addition, the competition absorption also played an important role in the luminescence quenching detection of Fe3+ based on 1 , and CrVI anions based on 1 and 2 . Therefore, 1 and 2 represent an alternative example of regenerable luminescence based sensors for the quantitative detection of Fe3+ and CrVI anions.  相似文献   

11.
《Solid State Sciences》1999,1(2-3):149-161
A spectroscopic investigation of the host matrix KGd2F7 is performed using Eu3+ as local probe. Its crystal structure derives from the fluorite-type by an ordering of the cations and anions. On powdered samples with different europium concentrations, the luminescence spectra of Eu3+:KGd2F7 allowed an identification of a multisite behaviour for the Eu3+ ions, leading to a lifetime distribution for the 5D0 emitting level.  相似文献   

12.
Red-emitting phosphor InNbO4:Eu3+ was synthesized by the solid-state reaction. Its crystal structure, particle size distribution, and luminescence properties were studied. The powder X-ray diffraction pattern shows that pure InNbO4:Eu3+ was obtained. According to the spectra obtained, this phosphor can efficiently be excited with the light at wavelengths of 394 and 466 nm to emit the strong red radiation at 612 nm due to the 5 D 07 F 2 transition of Eu3+. The best results were obtained at the concentration of the Eu3+ dopant equal to 4 mol.%. The chromaticity parameters of InNbO4:0.04Eu3+ are close to standards of the National Television Standard Committee. Thus, InNbO4:Eu3+ is a promising red-emitting phosphor for white-light emitting diodes.  相似文献   

13.
Silica xerogels containing Eu3+ ions and SnO2 nanocrystals were prepared in the sol‐gel process, and characterized by x‐ray diffraction (XRD) and photoluminescence spectra. Under the excitation at 393 nm, characteristic emission of Eu3+ ions at 614 nm was enhanced with increasing amount of SnO2 nanocrystals. Moreover, when the Eu3+/SnO2 co‐doped samples were excited at 345 nm, corresponding to the sideband of SnO2 nanocrystals, the emission of Eu3+ ions at 614 nm was clearly observed, while no emission of Eu3+ ions for the Eu3+‐doped sample. It may be ascribed to the energy transfer from SnO2 conduction band to Eu3+ conduction band. Further experimental results suggest that the energy transfer may be achieved through surface transition state.  相似文献   

14.
A series of phosphors SrBPO5:R,Na+ (R = Eu3+, Tb3+) were prepared by high-temperature solid-state synthesis, and their phase purity, morphology, IR spectra, and UV-Vis photoluminescence properties were investigated. The f-f transitions of Eu3+ and Tb3+ ions in the host lattice were assigned and discussed. The excitation and emission spectra indicate that SrBPO5:Eu3+,Na+ and SrBPO5:Tb3+,Na+ can be effectively excited by ultraviolet (394 and 370 nm), and exhibit reddish orange emission and yellowish green emission, respectively. The influence of the doping concentration on the relative emission intensity of Eu3+/Tb3+ was investigated, and the critical distance Rc was estimated in term of the concentration quenching data. The present study suggests SrBPO5:R,Na+ (R = Eu3+, Tb3+) phosphor can be a potential candidate as an UV-convertible phosphor for white light-emitting diodes (LEDs).  相似文献   

15.
Chitosan membranes with trivalent lanthanide ion Eu3 + were prepared at a ratio of 3:1 w/w (chitosan:lanthanide). There was no membrane formation at a ratio of 1:1 w/w (chitosan: Eu3 + or Tb3 +); in this case a white solid powder was obtained. Both chitosan compounds were characterized by elemental analysis (CHN), thermal analysis (TG/DTG), scanning electron microscopy (SEM) and luminescence spectroscopy. CHN analysis was performed only for chitosan compounds in powder form, suggesting that these compounds have the general formula QUILn.6H2O, where QUI = Chitosan and Ln = Eu3 + or Tb3 +. The results of TG/DTG curves for chitosan membranes with Eu3 + ion indicate that the introduction of this metal into the chitosan structure causes gradual degradation in residual carbons, showing lower weight loss in the Eu3 + membranes compared to pure chitosan membrane. Analysis of luminescence demonstrated that chitosan membranes with Eu3 + ion exhibit emission in the visible region, showing emission bands from chitosan and Eu3 + moieties. For chitosan with Eu3 + and Tb3 + ions compounds, in powder form, the analysis of luminescence suggested that chitosan is not transferring energy to the lanthanide ion; however, the chemical region where the lanthanide ion is found breaks the selection rules and favors the emission of these ions.  相似文献   

16.
One of the most critical and yet unsolved issues is the effective monitoring of multiple heavy metal ions in complex systems through their specific function in fluorescence detection. In this work, luminescence-active cadmium base metal-organic frameworks (Cd-MOFs) based on the planar and rigid π-conjugated structure ligand benzo-(1,2;3,4;5,6)-tris (thiophene-2’-carboxylic acid) (H3BTTC) was chosen. A series of sensing experiments demonstrated that the Cd-MOFs exhibits selective and sensitive response for Fe3+ and Eu3+ through fluorescence “turn off” and “antenna effect” respectively. In addition, the encapsulation of Eu3+ inside the Cd-MOFs (Eu3+@Cd-MOFs) led to an excellent probe with dual emission. To this end, a programmable fluorescence platform was developed to detect Fe3+ and Cu2+, in which the emission peaks of both the ligand and Eu3+ are completely quenched by Fe3+. The ratiometric detection of Cu2+ leads to a decrease in Eu3+ emission, while the ligand emission remains stable. To demonstrate the strategy, the fluorescence (Output) of Cd-MOFs, Eu3+@Cd-MOFs, and the analytes (Eu3+, Fe3+, and Cu2+, input) achieved elementary Boolean logic operations (OR, NOR, AND) and they constitute a logic fluorescent chemosensor to analyze Fe3+ and Cu2+ synchronously.  相似文献   

17.
A new rhodamine-based chemosensor was synthetized through a modified copper-catalyzed [3+2]-cycloaddition of an azidocoumarin with an alkynyl-rhodamine. Its sensing properties toward various metal cations in aqueous solutions were investigated by colorimetric changes, UV–vis and fluorescence spectroscopies. The sensor exhibited a high selectivity for Cr2+ over Cr3+ and other divalent cations such as Cu2+, Mg2+, Zn2+, Ca2+, Cd2+, Co2+, Hg2+ and Ni2+. The linear range of detection by fluorescence spectroscopy is 0.07–3.5 mM, with a detection limit of ca. 64 μM. The binding mode of Cr2+ with the sensor was rationalized through experimental evidences.  相似文献   

18.
Eu3+-doped boehmite nanofiber materials with different Eu3+ concentrations were synthesized without any surfactant, and followed by a series of characterizations. It was found that the boehmite nanofibers became coarser with the increase of Eu3+ concentration, which resulted in a gradual decrease of their specific surface areas. Moreover, the thermal stability of the boehmite nanofibers was studied by thermogravimetry–differential scanning calorimetry. All materials showed the phase transition from γ-Al2O3 to other forms. Yet the transition temperature was increased with the increase of Eu3+ concentration. The Eu3+-doped boehmite nanofibers with the maximum Eu3+ concentrations showed the best thermal stability. Photoluminescence spectra showed that the 2 mol% of doping concentration of Eu3+ ions in Eu3+:Al2O3 nanofiber was optimum.  相似文献   

19.
The photoluminescence (PL) studies on NaIn1?xRExW2O8, with RE=Eu3+, Tb3+, Dy3+ and Tm3+ phases have shown that the relative contribution of the host lattice and of the intra-f–f emission of the activators to the PL varies with the nature of the rare earth cation. In the case of Dy3+ and Tm3+ activators, with yellow and blue emission, respectively, the energy transfer from host to the activator plays a major role. In contrast for Eu3+, with intense red emission, the host absorption is less pronounced and the intra-f–f transitions of the Eu3+ ions play a major role, whereas for Tb3+ intra-f–f transitions are only observed, giving rise to green emission.  相似文献   

20.
The complexation reaction between Eu3+, La3+, Er3+ and Y3+ cations with the dicyclohexyl-18-crown-6 (DCH18C6) in acetonitrile (AN)–dimethylformamide (DMF) and AN–methanol (MeOH) binary systems have been studied at different temperatures using conductometric method. The conductometric data show that the stoichiometry of the complexes is 1:1 [ML]. The results show that the stability constant of complexes in various solvents is: AN > MeOH > DMF. In the some cases, the minimum of logKf for (DCH18C6–Eu3+), (DCH18C6–La3+), (DCH18C6–Er3+) and (DCH18C6–Y3+) complexes in AN–MeOH binary systems obtain at χMeOH ~ 0.75, and also, the logKf of (DCH18C6–Er3+) complex in AN–DMF binary systems show a minimum at χAN ~ 0.75. Non-linear behavior was observed for the stability constant of complexes versus the composition of the solvent systems. The experimental data show that the selectivity order of DCH18C6 for these cations in AN–MeOH binary systems (mol% AN = 50, 75) at 25 °C is: Y3+ > Er3+ > Eu3+ > La3+. The values of thermodynamic parameters (?H?C) for formation of complexes were obtained from temperature dependence of stability constants of complexes using the van′t Hoff plots and the standard entropy (?S?C) were calculated from the relationship: ?G?C, 298.15 = ?H?C ?298.15?S?C. The results show that the values of these thermodynamic parameters are influenced by the nature and the composition of the binary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号