首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Electronic Resonance Raman Spectrum of Hexabromo Osmate(IV) Besides the vibrational bands there are other strong bands in the low-temperature Raman spectrum of [OsBr6]2?, which are independent from the excitation line and are interpreted as arising from transitions between the spin-orbit split components of the 3T1g–Os4+ ground state. The band at 2800 cm?1 is anomal polarized and attributable to Γ1(3T1g) → Γ4(3T1g), while the band at 4880 cm?1 is depolarized and therefore assigned to Γ1(3T1g) → Γ5(3T1g). In the electronic Raman spectrum, too, a rigorous resonance-Raman effect is displayed and as far as six overtones of the stretching vibration A1g and as many combination tones especially with T2g are observed. Because of the dynamic Jahn-Teller effect Γ1(3T1g) → Γ3(3T1g) cannot be detected as an electronic Raman transition. Γ1(3T1g) → Γ1(1T1g) at 15915 cm?1 is obtained by luminescence absorption. The results are in good agreement with the absorption spectrum.  相似文献   

2.
The 00 band maximum of the transition T3(π, π*) ← T1 (π, π*) of acridine occurs at ≈ 10200 ± 20 cm?1 in inert (n-hexane, benzene, CCl4), at 10220 ± 20 cm?1 in polar (acetonitrile) and at 10170 ± 50 cm?1 in hydrogen-bonding (methanol, 2-propanol and alkaline water) solvents. Based on the solvent-independent energy of T1 (π, π*), the T3(π, π*) state of acridine is estimated at 26050 ± 50 cm?1 in all the solvents.  相似文献   

3.
Strongly enhanced N2 first positive emission N2(B 3Πg → A 3Σ+u) has been observed on addition of N atoms into a flowing mixture of Cl and HN3. The dependence of the emission intensity on N atom concentration gave a rate constant for the reaction N + N3 → N2(B 3Πg) + N2(X 1Σ+g) of i(1.6 ± 1.1) × 10?11 cm3 molecule?1 s?1. That for the reaction Cl + HN3 → HCl + N3 is (8.9 ± 1.0) × 10?13 cm3 molecule?1 s?1 from the decay of the emission. Comparison of the emission intensity in ClHN3 with that in ClHN3N gave the rate constant of the reaction N3 + N3 → N2(B 3Πg) + 2N2(X 1Σ+g) as 1.4 × 10?12 cm3 molecule?1 s?1 on the assumption that N + N3 yields only N2(B 3Πg) + N2(X 1Σ+g).  相似文献   

4.
The 3A23E (3T2) band system of MnO3?4 in Sr5(PO4)3Cl at 4.2 K between 10000 and 12000 cm?1 consists of a single progression with 18 components (average frequence 94.5 cm?1) and a double-humped distribution of Franck-Condon factors. as predicted for the vibronic interaction of an E electronic state with an e vibrational mode.  相似文献   

5.
In a molecular beam the effects of vibrational pumping of SF63 = 948 cm?1) are studied, using a line-tunable cw CO2 laser. Intracavity spontaneous Raman scattering is used for analysis. For excitation in the collision regime (xE/D ≤ 1), a thermal redistribution of the ν3 excitation over all vibrational modes is found, together with an average absorption up to six photons per molecule. The infrared absorption profile shows a red-shift of 6 cm?1. For excitation in the relatively rare collision regime (xE/D ? 4), a structured non-thermal ν1 Raman spectrum is observed, especially in the case of seeded molecular beams (10% in He). The observed hot-band peaks can be explained in terms of single-photon absorptions and collision-induced near-resonant V-V energy transfer, leading to single, double and triple excitations of the ν3 mode. The value of Trot in the beam is found to influence sensitively the non-resonant energy-transfer rate [e.g. hν3(948 cm?1)+ΔEroth4 + ν6)(962 cm?1) relative to the near-resonant transfer rate (hν3 + hν3 → 2hν3 + 3.5 cm?1)].  相似文献   

6.
The electronic absorption spectrum of the Fe2+ ion doped in ammonium chloride has been studied at room and liquid air temperatures. The observed bands have been assigned transitions from the ground 6A1g(S) state to the excited 4A1g(4Eg), 4T1g(G) and 4T2g(G) states. The cubic field approximation with Dq = 675 cm?1, B = 645 cm?1 and C = 4.4 B is found to give a good fit to the observed band positions.It is further concluded that the site symmetry of the Fe3+ ion in the crystal is lowered from Oh to C4v symmetry at liquid air temperature.  相似文献   

7.
The emission spectra of the title compounds in microcrystalline form have been measured at 10 K. The extensive vibrational progression in the eg mode is indicative of a tetragonal Jahn—Teller distortion in the Γ?4(3T1u) excited state. The vibronic coupling of a threefold electronic state with a doubly degenerate eg mode (T—e coupling), linear in the nuclear coordinates, has been reinvestigated considering spin—orbit coupling up to second order perturbation on energy levels which result from an a11gt11u electron configuration. For an estimation of Jahn—Teller coupling constants, the intensity distributions in the progressions were compared with the theoretical line shape functions which were obtained from a model which also permits the determination of potential energy minima and vibrational fundamentals of the excited state. The unusually large increase in the eg vibrational frequency compared to the ground state is due to Jahn-Teller forces which distort the potential surface, yielding steeper excited state energy curves.  相似文献   

8.
SCF closed shell calculations were performed to determine the equilibrium structure and vibrational frequencies of the O4 molecule by means of Payne's method and with the help of the molecule's symmetry coordinates. The equilibrium geometry corresponds to symmetry group D2d with R = 1.505 Å and h = 0.094 Å. The vibrational frequencies are: ν5(E) = 885.5 cm?1, ν3(B1) = 1051.9 cm?1, ν1(A1) = 1018.3 cm?1, ν4(B2) = 880.3 cm?1. The second vibrational coordinate (A1) corresponds to a double-well potential. The first vibrational levels were calculated by a variational method.  相似文献   

9.
The multiple scattering Xα method has been used to calculate the ordering of both occupied and unoccupied one-electron energy states of Re3Cl82?. Single crystal polarized electronic spectra of [(n-C4H9)4N]2[Re2Cl8] have been measured at 5 K. Principal band maxima are observed at 14 180 (z), 30870 (xy), and 39 215 (z) cm?1. The calculation, observed polarizations, and a comparison of band positions in Re2Cl82? and Re2Br82? suggest the following transition assignments for the former complex: 14 180 cm?1, b2gδ → b1uδ*; 30 870 cm?1, eg → b1uδ*; 39 215 cm?1, euπ → egπ*.  相似文献   

10.
True lineshape of the ν3(b1) vibrational transition of 32SO2 isolated in an Ar matrix was measured with a high resolution (< 10?3 cm?1) tunable diode laser spectrometer and temperature effects on line frequencies and linewidths are reported.  相似文献   

11.
Chemiluminescence studies of the reactions of microwave-discharged oxygen with SbBr3 have led to the observation of some band sequences in the near infrared region which are attributed to b0+ → X10+ and b0+ → X21 transitions of SbBr. Analysis of the spectra yielded Te values for the X21 and b0+ states of 874 ± 10 and 12756 ± 10 cm?1, respectively, and vibrational frequencies in the X10+, X21 and b0+ states of ω′'e(X1, X2) = 257 ± 10 and ω′e(b) = 270 ± 10cm?1.  相似文献   

12.
Finestructure in the Vibrational and Electronic Absorption Spectra of [CrO4]2? and [MnO4]? The ir and ra spectra of Tl2[CrO4] and (C2H5)4N[MnO4] are measured and assigned. Details of the preresonance- and resonance-Raman effect are discussed. The exact knowledge of the vibrational spectrum enables the understanding of the complicated vibrational finestructure in the electronic absorption spectrum of (C2H5)4N[MnO4]. For the states of the charge-transfer t1 → e* bands are found at 15 000, 15 170 cm?1 for 1T1(I), at 17 646, 17 708, 17 809 cm?1 for 1T2(II) and at 17 920, 17 992 and 18 080 cm?1 for 3T2(III). The electronic origin for the states of the t2 → e* chargetransfer is at 24 661 for 1T1(IV) and 30 230 cm?1 for 1T2(V). The vibrational coupling is only with the totally symmetric Mn? O-stretching-vibration. Bands at 29 500 cm?1 and 44 450 cm?1 are assigned to the 1T2-states of the t1, t2 → t2* charge-transfer.  相似文献   

13.
Preparation, Vibrational Spectra, and Normal Coordinate Analysis of Hexachlororhenate(V) and Crystal Structure of [P(C6H5)4][ReCl6] By oxidation of A2[ReCl6], A = [(n-C4H9)4N]+, [P(C6H5)4]+, with Cl2 in dichloromethane/trifluoracetic acid A[ReCl6] is formed. [P(C6H5)4][ReCl6] crystallizes with tetragonal symmetry, space group P4/n-C, a = 12.967(4), c = 7.6992(8) Å, Z = 2. The octahedral complexion [ReCl6]? is compressed (C4v) with the bond lengths, axial Re? Cl1 = 2.28 and Re? Cl3 = 2.24 Å, equatorial Re? Cl2 = 2.31 Å. The infrared active antisymmetric Re? Cl stretching vibration is split into v3 = 346 an v3 = 326 cm?1. The assignment of all IR and Raman modes is confirmed by a normal coordinate analysis. The different valence force constants, fd(ReCl1) = 2.09, fd(ReCl3) = 2.10, fd(ReCl2) = 1.88 mdyn/ Å result from the distortion of the octahedron. On excitation with the Ar laser line 514.5 nm a resonance Raman spectrum is observed, showing 8 overtones of v′(A1) = 382 cm?1, from which the harmonic frequency ω1 = 382.1 cm?1, the anharmonicity constant X11 = ?0.76 cm?1, and the maximum bond dissociation energy of the [ReCl6]? ion to be 138 kcal/mol, are calculated. The vibrational fine structure of the intraconfigurational transitions in the near infrared has been resolved by measuring the absorption spectrum of [(n-C4H9)4N][ReCl6] at low temperature (10 K), resulting in the assignment of the following electronic origins: Γ3(3T1g) → Γ4(3T1g): 7 512, Γ3(3T1g) → Γ1(3T1g): 7 624 and Γ3(3T1g) → Γ5(1T2g), Γ3(1Eg): 8 368 cm?1.  相似文献   

14.
Spectra emitted from 0.1% CO-N2 solids excited with high energy electrons at 4 K show evidence for resonant transfer of vibrational energy from highly excited vibrational levels of N2 to CO in the process N2(X1Σg+, ν) + CO(ν = 0) → N2(X1Σg+, ν - 1) + CO(ν = 1) + phonons. Energy transfer from levels with ν ? 9 has been observed.  相似文献   

15.
The diffusion coefficient of O*2(1Δg) in O2(3Σ?g) has been measured as a function of pressure, D* = 0.201 ± 0.005 cm2 s?1 at 1 atmosphere and 298 K.  相似文献   

16.
Collisional deactivation of the first excited electronic 1Δg(υ = 0) state of O2 involves intersystem crossing to higher vibrational levels (υ < 5) of the electronic ground state 3Σ?g. It is followed by rapid vibrational-vibrational energy exchange which populates the first excited 3Σ?g(υ = 1) vibrational level. The suggested relaxation mechanism is supported by experimental results on the time dependence of the populations of the 1Δg(υ = 0) and 3Σ?g(υ = 1) states in liquid natural O2 and 18O2.  相似文献   

17.
Vibrational chemiluminescence in the Δν1 = Δν3 = ?1 band of NO2 is observed both in the O + NO and O3 + NO reactions and shown to be emitted by molecules with up to 11 000 cm?1 of vibrational energy. Quenching rate constants of NO23 are estimated ranging from about 6 × 10?14 for Ar to about 3 × 10?12 cm3 s?1 for NO2. The ratio of vibrational to electronic emission is 0.06 ± 0.03 for O + NO and 5.3 ± 1.0 for O3 + NO. It is suggested that vibrationally excited NO2 is a major product of that channel of the O3 + NO reaction which forms ground-state NO2(2A1) directly.  相似文献   

18.
Ab initio multi-configuration self-consistent field and first-order configuration interaction (FOCI) calculations in an extended basis set have been carried out for the lower energy electronic states of Al2. The ten core electrons of each Al atom were replaced by an accurate compact effective core potential. The FOCI calculated To value for the 3Σg?-3Σu? transition agrees with the experimentally observed emission band to within 90 cm?1. 3Πu is calculated to be the electronic ground state of Al2. Based on FOCI energies and qualitative intensity arguments, the reported optical absorption spectrum of matrix isolated Al2 also agrees best with a 3Πu ground state. The 3Σg?1 state is calculated (Te) at only 324 cm?1 above the 3Πu state, and the 1ΣEg+ state is predicted to lie higher.  相似文献   

19.
A tentative vibrational assignment of the B?2B1 ← X?2A1 absorption system of NO2 in solid Xe is reported. About 65 bands were analysed, yielding normal vibration energies of ν1 = 1230, ν2 = 450 and ν3 = 2040 cm?1. The electronic transition energy can be estimated to be T010 = 14160 cm?1 (14220 cm?1 for the gaseous phase). These observations are in good agreement with predictions made using ab initio calculations. Evidence for Renner—Teller interaction is documented by a systematic staggering of frequency intervals between successive bands in the ν2 progression of the B? state.  相似文献   

20.
Near-infrared emissions of the b0+ → X10+, X21 band systems of TeSe have been observed in a discharge flow system. Analysis of the spectra yielded Te values of the X21 and b0+ states of 1235 ± 5 cm?1 and 8794 ± 5 cm?1, respectively, and a vibrational spacing in the b0+ state of ωe(b) = 294 ± 3 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号