首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(perfluoro‐4‐vinyloxy‐1‐butene), which is also known as Cytop, and poly[4,5‐difluoro‐2,2‐bis(trifluoromethyl)‐1,3‐dioxole]‐co‐poly(tetrafluoroethylene) copolymers with dioxole monomer contents of 65% or 87% (known as Teflon AF1600 and Teflon AF2400, respectively) were plasticized with four fluorous compounds. While plasticization of all polymers with perfluoroperhydrophenanthrene, perfluoro(1‐methyldecalin), a perfluorotetraether with three trifluoromethyl side groups and one hydrogen atom, and a linear perfluorooligoether with an average of 14.3 ether groups per molecule was successful, these four plasticizers affected the 12 blends very differently. A threshold of plasticization beyond which further increases in the plasticizer volume fraction did not further affect the glass transition temperature, Tg, was observed for some blends. Also, the limit of miscibility ranged from as low as 20% plasticizer content to complete miscibility at all volume fractions. The blends of Teflon AF2400 or Teflon AF1600 with high contents of the oligoether provided Tg values as low as ?114 °C, lower than for any other fully miscible blend. The occurrence of two glass transitions in an intermediate range of plasticizer volume ratios for these two types of blends can be explained by distinct local environments rather than macroscopic phase separation, as anticipated by the Lodge‐McLeish model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 516–525, 2008  相似文献   

2.
Films with a fine structure consisting of innumerable nanopillars of mesoporous silica (MPS) are formed by a reactive ion etching process with a fluorine‐containing gas. Each nanopillar has a tapered shape with a uniform height, which effectively suppresses reflection by the formation of an ideal graded refractive index structure. The nanopillars are spontaneously formed under low‐pressure conditions, wherein locally deposited Al?F compounds, originating from an alumina plate in the etching chamber, work as a fine etching mask. The high etching rate of the MPS film allows a very high aspect ratio of the nanopillars. The refractive index of the MPS nanopillars can be universally tuned by a controlled incorporation of TiO2 into the mesopores, which results in effective reduction of reflectance on a given substrate. The outstanding antireflection performance is experimentally demonstrated for glass substrates with a wide refractive index range.  相似文献   

3.
Production of hydrogen by electrochemical water splitting has been hindered by the high cost of precious metal catalysts, such as Pt, for the hydrogen evolution reaction (HER). In this work, novel hierarchical β‐Mo2C nanotubes constructed from porous nanosheets have been fabricated and investigated as a high‐performance and low‐cost electrocatalyst for HER. An unusual template‐engaged strategy has been utilized to controllably synthesize Mo‐polydopamine nanotubes, which are further converted into hierarchical β‐Mo2C nanotubes by direct carburization at high temperature. Benefitting from several structural advantages including ultrafine primary nanocrystallites, large exposed surface, fast charge transfer, and unique tubular structure, the as‐prepared hierarchical β‐Mo2C nanotubes exhibit excellent electrocatalytic performance for HER with small overpotential in both acidic and basic conditions, as well as remarkable stability.  相似文献   

4.
The nonisothermal crystallization behaviors of isotactic polypropylene (iPP) with an aryl amide derivative TMB‐5 as β‐form nucleating agent has been investigated by differential scanning calorimetry, X‐ray diffraction, and polarized optical microscopy. The feature of crystallite morphology depends on concentration and thermal conditions. At low concentrations, TMB‐5 molecules aggregate into fibril structures and presented blunt exothermic peak with a shoulder at high temperature. The surface of these fibrils host active sites tailored for the nucleation of β‐iPP, represented by clusters of microcrystallites. With increasing concentration, αβ‐transcrystalline layer develops on the lateral surface of needle‐shaped TMB‐5. Enhanced multiple endotherms indicate the ensuing crystals are less perfect and easily transformed into more stable forms. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 314–325, 2009  相似文献   

5.
Polymerization of β‐myrcene with neodymium borohydride‐based coordination catalysts is very efficient, affording poly‐β‐myrcene (polymyrcene, PMy) with high selectivity. With stoichiometric amounts of n‐butylethyl magnesium (BEM) as co‐catalyst, good control over macromolecular data along with cis‐stereoselectivity up to 98.5%, are obtained. In the presence of excess BEM, high level of transfer reactions efficiency between neodymium and magnesium is clearly evidenced whereas the selectivity switches to 3,4‐rich. Combining the neodymium pre‐catalyst with triisobutyl aluminum in the presence of a boron activator affords PMy in good yield, but the polymer material displays low solubility, likely due to the occurrence of crosslinking. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
We demonstrate the use of functionalized graphene sheets (FGSs) as multifunctional nanofillers to improve mechanical properties, lower gas permeability, and impart electrical conductivity for several distinct elastomers. FGS consists mainly of single sheets of crumbled graphene containing oxygen functional groups and is produced by the thermal exfoliation of oxidized graphite (GO). The present investigation includes composites of FGS and three elastomers: natural rubber (NR), styrene–butadiene rubber, and polydimethylsiloxane (PDMS). All of these elastomers show similar and significant improvements in mechanical properties with FGS, indicating that the mechanism of property improvement is inherent to the FGS and not simply a function of chemical crosslinking. The decrease in gas permeability is attributed to the high aspect ratio of the FGS sheets. This creates a tortuous path mechanism of gas diffusion; fitting the permeability data to the Nielsen model yields an aspect ratio of ~1000 for the FGS. Electrical conductivity is demonstrated at FGS loadings as low as 0.08% in PDMS and reaches 0.3 S/m at 4 wt % loading in NR. This combination of functionalities imparted by FGS is shown to result from its high aspect ratio and carbon‐based structure. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

7.
Natural human hair was successfully modified by the graft polymerization of trimethylene carbonate, β‐propiolactone, ε‐caprolactone, glycidol, ε‐caprolactam, and 5,5‐dimethyl‐1,3‐dioxane‐2‐thione. In contrast, we could not modify natural human hair by the graft polymerization of oxetane under similar conditions. The model reaction suggested that the main initiating species in these polymerizations were the amino, thiol, and hydroxyl groups in hair, which could induce ring‐opening polymerization. Among the tested monomers, β‐propiolactone was most effective for hair modification with its graft polymer, whose concentration was as high as 0.5 g/g of hair though polymerization under mild conditions. The effects of the hair pretreatment and polymerization temperature on the weight ratio of the grafted polymers were also investigated. Hair modified by grafted polymers was characterized with scanning electron microscopy and Fourier transform infrared measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 736–744, 2007  相似文献   

8.
Nanocomposites based on poly(ethylene terephthalate) (PET) and expanded graphite (EG) have been prepared by in situ polymerization. Morphology of the nanocomposites has been examined by electronic microscopy. The relationship between the preparation method, morphology, and electrical conductivity was studied. Electronic microscopy images reveal that the nanocomposites exhibit well dispersed graphene platelets. The incorporation of EG to the PET results in a sharp insulator‐to‐conductor transition with a percolation threshold (?c) as low as 0.05 wt %. An electrical conductivity of 10?3 S/cm was achieved for 0.4 wt % of EG. The low percolation threshold and relatively high electrical conductivity are attributed to the high aspect ratio, large surface area, and uniform dispersion of the EG sheets in PET matrix. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

9.
Layer‐multiplying coextrusion was used in conjunction with isothermal recrystallization to study the confined crystallization of polyvinylidene fluoride (PVDF) and polyvinylidene fluoride‐tetrafluoroethylene (PVDF‐TFE) using polycarbonate (PC) and polysulfone (PSF) as confining materials. Three layered systems were produced (PC/PVDF, PSF/PVDF, and PC/PVDF‐TFE) with layer thicknesses ranging from 525 to 28 nm. The crystal morphology was affected by both layer thickness and recrystallization temperature. Specifically, increased recrystallization temperature and decreased layer thickness facilitated the formation of high aspect ratio in‐plane crystals in both PVDF based polymers. On the other side of the spectrum, thicker layers and lower recrystallization temperatures produced on‐edge PVDF crystals and isotropic PVDF‐TFE crystals. The morphology was correlated with oxygen permeability, which decreased by almost two orders of magnitude compared with the bulk. A variety of crystal structures were obtained and explained with nucleation and diffusion theory. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

10.
Nanostructured poly(vinylidene fluoride) (PVDF)/polyamide 11 (PA11) blends have been melt‐processed using a high‐shear extruder. Uniaxially oriented blended films were fabricated by hot rolling to prepare ferroelectic films. The effects of rolling temperature and draw ratio on the crystal forms of both PVDF and PA 11 were investigated by means of Fourier transform infrared spectra (FTIR) and wide‐angle X‐ray diffraction (WAXD). It was shown that hot rolling in the range of 25–110 °C results in the crystal form transformation from the nonpolar α‐form into the polar β‐form for PVDF. The content and orientation function of β‐crystallites are strongly dependent upon the rolling temperature and the draw ratio. The highest content of well‐oriented β‐crystallites was achieved with a draw ratio of 4.0 upon rolling at 80 °C. At the same time, the content of the α‐form of PA11 in the blend was also found to decrease by hot rolling. The ferroelectric properties (DE hysteresis) of the oriented blended films were measured. The remanent polarization of the PVDF/PA11 = 90/10 blend is as high as 91 mC/m2, which is about 1.2 times higher than that of pure PVDF. The DE hysteresis curves and the temperature dependence of the piezoelectric stress coefficients of the high‐shear‐processed sample suggested that the formation of nano‐dispersed structures resulted in the improvement of the remanent polarization and thermal characteristics at a temperature higher than 80 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2707–2714, 2007  相似文献   

11.
Polymeric nanostructures with high aspect ratios, so-called nanopillars, are of interest for a wide range of applications. However, it remains a challenge to fabricate high-density, polymeric nanopillars using soft lithography when the feature size is decreased to hundreds of nanometers and the structures are close to each other. Here, we investigate the fidelity of replica molding technique to fabricate polymer nanopillar arrays with diameters ranging from 300 nm to 1 mum, and we compare the experimental results to the theoretical prediction to understand the nature of the instability of nanopillars. Nanopillars molded from soft materials, poly(dimethylsiloxane) (PDMS), mainly ground collapse due to the adhesive force when the aspect ratio is above 6, whereas those from stiffer materials, polyurethane and epoxy, collapse laterally at a much higher aspect ratio (>/=12), of which the critical value is dependent on the nanopillar's feature size, spacing, height, and shape. Further, we attempt to restore the collapsed high-aspect-ratio nanopillars using supercritical CO(2) drying.  相似文献   

12.
An efficient novel method for the synthesis of a covalent molecularly imprinted polymer (MIP) highly specific to β‐estradiol have been developed. MIP prepared by both covalent and non covalent techniques, demonstrated high selectivity toward β‐estradiol. MIPs were synthesized by radical polymerization of 17‐β‐estradiol 4‐vinyl‐benzene carboxyl or sulfonyl esters used as covalent functional monomers, methacrylic acid as noncovalent functional monomer, ethylene glycol dimethacrylate as crosslinking agent, and acetonitrile as swelling and porogenic component. Almost 35% (w/w) of 17‐β‐estradiol was successfully removed from the polymer network by basic hydrolysis. The binding ability of MIP was 10.73 μg/mg MIP following removal of 17‐β‐estradiol in the 2 mg/mL β‐estradiol solution. Selective rebinding of β‐estradiol toward MIP was tested in the presence of competitive binders including estrone, 19‐nortestosterone, epiandrosterone, and cholesterol. Estrone having closest similar chemical structure to β‐estradiol exhibited only 0.6 μg/mg MIP competitive binding, being exposed to equivalent concentrations. Moreover, other competitive steroids demonstrated negligible affinity toward MIP indicating high selectivity of novel MIP system toward β‐estradiol. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5534–5542, 2009  相似文献   

13.
In this study, we used click chemistry to synthesize a new macromolecular self‐assembling building blocks, linear polypeptide‐b‐polyhedral oligomeric silsesquioxane (POSS) copolymers, from a mono‐azido–functionalized POSS (N3‐POSS) and several alkyne‐poly(γ‐benzyl‐L ‐glutamate) (alkyne‐PBLG) systems. The incorporation of the POSS unit at the chain end of the PBLG moiety allowed intramolecular hydrogen bonding to occur between the POSS and PBLG units, thereby enhancing the α‐helical conformation in the solid state, as determined through Fourier transform infrared spectroscopy and wide‐angle X‐ray diffraction analyses. POSS‐b‐PBLG underwent hierarchical self‐assembly, characterized using small‐angle X‐ray scattering, to form a bilayer‐like nanostructure featuring α‐helical or β‐sheet conformations and POSS aggregates. Thermogravimetric analysis indicated that the thermal degradation temperature increased significantly after incorporation of the POSS moiety, which presumably formed an inorganic protection layer on the nanocomposite's surface. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Amorphous polymers exhibit a primary (glass, or α‐) relaxation process and a low‐temperature relaxation process associated with polymer backbone motion usually referred to as the β‐relaxation process. The latter process can be observed below the glass transition temperature of the polymer and usually merges with the α‐relaxation process at temperatures somewhat above the glass transition temperature. While it is widely held that both the α‐relaxation and β‐relaxation processes are engendered by localized (segmental) motions of the polymer backbone, and that there is a strong mechanistic connection between them, the molecular mechanisms of the α‐relaxation and β‐relaxation processes in amorphous polymers are not well understood. Recently, atomistic molecular dynamics simulations of melts and blends of 1,4‐polybutadiene have provided insight into the relationship between the α‐ and β‐relaxation processes in glass‐forming polymers and an improved understanding of their molecular origins. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 627–643, 2007  相似文献   

15.
A series of novel vanadium(III) complexes bearing tridentate phenoxy‐phosphine [O,P,O] ligands and phosphine oxide‐bridged bisphenolato [O,P?O,O] ligands, which differ in the steric and electronic properties, have been synthesized and characterized. These complexes were characterized by Fourier transform infrared spectroscopy (FTIR) and mass spectra as well as elemental analysis. Single‐crystal X‐ray diffraction revealed that complexes 3c and 4e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a cocatalyst, these complexes displayed high catalytic activities up to 22.8 kg PE/mmolV.h.bar for ethylene polymerization, and produced high‐molecular‐weight polymers. Introducing additional oxygen atom on phosphorus atom of [O,P,O] ligands has resulted in significant changes on the aspect of steric/electronic effect, which has an impact on polymerization performance. 3c and 4c /Et2AlCl catalytic systems were tolerant to elevated temperature (70 °C) and yielded unimodal polyethylenes, indicating the single‐site behavior of these catalysts. By pretreating with equimolar amounts of alkylaluminums, functional α‐olefin 10‐undecen‐1‐ol can be efficiently incorporated into polyethylene chains. 10‐Undecen‐1‐ol incorporation can easily reach 14.6 mol % under the mild conditions. Other reaction parameters that influenced the polymerization behavior, such as reaction temperature, Al/V (molar ratio), and comonomer concentration, are also examined in detail. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Nickel nanopillar arrays were electrodeposited onto silicon substrates using porous alumina membranes as a template. The characterization of the samples was done by scanning electron microscopy, X-ray diffraction, and alternating force gradient magnetometry. Ni nanostructures were directly grown on Si by galvanostatic and potentiostatic electrodeposition techniques in three remarkable charge transfer configurations. Differences in the growth mechanisms of the nanopillars were observed, depending on the deposition method. A high correlation between the height of the nanopillars and the charge synthesis was observed irrespective of the electrochemical technique. The magnetization measurements demonstrated a main dependence with the height of the nanopillars. The synthesis of Ni nanosystems with a controllable aspect ratio provides an effective way to produce well-ordered networks for wide scientific applications.  相似文献   

17.
Two multi‐walled carbon nanotubes (MWCNTs) having relatively high aspect ratios of 313 and 474 with approximately the same diameter were melt mixed with polycarbonate (PC) in a twin‐screw conical micro compounder. The effects of aspect ratio on the electrical, mechanical, and thermal properties of the PC/MWCNT composites were investigated. Electrical conductivities and storage moduli of the filled samples are found to be independent of the starting aspect ratio for these high aspect ratio tubes; although the conductivities and storage moduli are still significantly higher than values of composites made with nanotubes having more commercially common aspect ratios of ~100. Transmission electron microscopy results suggest that melt‐mixing reduces these longer nanotubes to the same length, but still approximately two times longer than the length of commercially common aspect ratio tubes after melt‐mixing. Molecular weight measurements show that during melt‐mixing the longer nanotubes significantly degrade the molecular weight of the polymer as compared to very similar nanotubes with aspect ratio ~100. Because of the molecular weight reduction glass transition temperatures predictably show a large decrease with increasing nanotube concentration. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 73–83  相似文献   

18.
We investigated poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxide-co-tetrafluoroethylene (Teflon AF 2400, Tg = 240 degrees C), a stable and permeable fluorous polymer, as a transport/extraction medium for solutes for the first time. From the study of transport behavior of a series of solutes (in chloroform solution) through the film, and detailed measurement of the partitioning and diffusion of benzene in the film, we showed that the Teflon AF film is influenced by the solvent to which it is exposed. In particular, the solvent chloroform is sorbed in the film at a high concentration of 1.13 M. This plasticizes the film, so that the diffusion coefficient of benzene is about 3 orders of magnitude larger in a chloroform-equilibrated film compared to benzene coming from the gas phase into a "dry" film. The partition ratio of the polar solute 3-hydroxypyridine is dramatically higher in the case of partitioning between chloroform and a film (0.02) compared to partitioning between chloroform and the fluorous solvent FC-72 (6.7 x 10-5). Krytox FSH, a carboxylic acid terminated perfluoropolyether, plasticizes films. Tg in a 50% (w/w) film decreases to -40 degrees C. This carboxylic acid is capable of molecular recognition in the film. The noncovalent association between Krytox FSH (0.13 M in the film) and 3-hydroxypyridine increases the distribution ratio of the polar solute into the film by 41 times. In comparison, the partition ratio into a fluorocarbon solvent (FC-72) increases 15 000 times under the same conditions. As a result of imbibing organic solvent, the films of Teflon AF 2400 are not as fluorous as a fluorous liquid.  相似文献   

19.
In this study, organic memory devices with a single active layer between the two external electrodes were fabricated using an electron‐donor type conjugated polymer and an electron‐acceptor type small organic molecule. The active layer of the memory device was prepared by blending polystyrene, poly[10‐(2′‐ethylhexyl)phenothiazine‐3,7‐diyl], and tetracyanoquinodimethane in 1,2‐dichlorobenzene. The device initially showed a low‐conductance state (OFF state) in the low‐voltage range, and an abrupt current increase, corresponding to the transition to a high‐conductance state (ON state), occurred at a certain voltage (Vth). The ON state could be reverted to the OFF state by applying a voltage higher than Vth. The current ratio between the two states was about 103 (up to 105). After this transition, the device remained in the ON state even after the applied voltage was removed, and this indicated the nonvolatile characteristics of the device. There was no sharp current degradation in the OFF or ON states for 4500 s of continuous bias. The device‐to‐device performance fluctuation was measured, and the conduction mechanisms in the ON and OFF states were examined by fitting the data to well‐known theoretical models. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
As an extension of our continuing studies concerned with the mechanistic discussion of network formation in the free‐radical crosslinking (co)polymerization of multivinyl monomers, this work refers to the skewered reactions in the crosslinking (co)polymerizations of liquid polybutadiene rubber (LBR) as an internal olefinic multivinyl monomer or crosslinker, especially focused on the competitive occurrence of both addition or skewered reaction to internal carbon–carbon (CC) double bonds and abstraction reaction of allylic hydrogens in LBR by growing polymer radical. Thus, LBR is regarded as an internal olefinic multiallyl monomer‐linked allyl groups (? CH?CH? CH2? ) with methylene units (? CH2? ). First, gelation in the polymerization of LBR was explored in detail, especially at elevated temperatures. The occurrence of intermolecular crosslinking was easier in the order LBR > LBR containing 20 mol % of 1,2‐structural units > liquid polyisoprene rubber. Then, we pursued the polymerization of LBR using dicumyl peroxide (DCPO) as typical organic peroxide used at elevated temperatures. The primary cumyloxy radical generated by the thermal decomposition of DCPO may add to CC double bond or abstract allylic hydrogen or undergo β‐scission to generate a secondary methyl radical. The initiation by the cumyloxy radical was omitted. The ratio of allylic hydrogen abstraction to β‐scission reaction was estimated; thus, only 39% of cumyloxy radical was used for the allylic hydrogen abstraction reaction. The addition of methyl radical to CC double bond was clearly observed. Finally, we pursued the intermolecular and intramolecular skewered reactions in free‐radical crosslinking LBR/vinyl pivalate copolymerizations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号