首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The morphology and ionic conductivity of poly(1‐n‐alkyl‐3‐vinylimidazolium)‐based homopolymers polymerized from ionic liquids were investigated as a function of the alkyl chain length and counterion type. In general, X‐ray scattering showed three features: (i) backbone‐to‐backbone, (ii) anion‐to‐anion, and (iii) pendant‐to‐pendant characteristic distances. As the alkyl chain length increases, the backbone‐to‐backbone separation increases. As the size of counterion increases, the anion‐to‐anion scattering peak becomes apparent and its correlation length increases. The X‐ray scattering features shift to lower angles as the temperature increases due to thermal expansion. The ionic conductivity results show that the glass transition temperature (Tg) is a dominant, but not exclusive, parameter in determining ion transport. The Tg‐independent ionic conductivity decreases as the backbone‐to‐backbone spacing increases. Further interpretation of the ionic conductivity using the Vogel–Fulcher–Tammann equation enabled the correlation between polymer morphology and ionic conductivity, which highlights the importance of anion hoping between adjacent polymer backbones. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

2.
Large and rigid tetraarylphosphonium tetrafluoroborate salts have been synthesized representing weakly coordinating cations with diameters of several nanometers. Divergent dendritic growth by means of thermal Diels–Alder cycloaddition was employed for the construction of the hydrophobic polyphenylene framework up to the third generation. X‐ray crystal structure analysis of first‐generation phosphonium tetrafluoroborate supported the rigidity of the non‐collapsible shell around the phosphorus center and gave insight into solid‐state packing and cation–anion distances. Copper(I)‐catalyzed azide–alkyne ligation served as reliable method for the preparation of a first‐generation triazolylphenyl hybrid phosphonium cation under mild reaction conditions. Furthermore, from the synthesis of triarylbenzylphosphonium bromides, Wittig precursors with unprecedented bulky substituents in the α‐position were accessible. Employment of these precursors under Wittig conditions by treatment with base and subsequent reaction with aldehydes preferentially provided (Z)‐olefins with bulky polyphenylene substituents.  相似文献   

3.
Ten types of cationic glycidyl triazole polymers (GTPs) are prepared from combinations of five alkyl‐imidazolium units (methyl‐, ethyl‐, n‐propyl‐, iso‐propyl‐, and n‐butyl‐imidazoliums) and two spacers [di‐ and tri(ethylene glycol)s]. Since these poly(ionic liquid)s are prepared from the same sample of glycidyl azide polymer by postfunctionalization method, they have the same degree of polymerization. Therefore, the structure–property relationship can be discussed without influence of molecular weight difference. The samples are characterized by NMR, differential scanning calorimetry, and thermogravimetric analysis. The ionic conductivity data are obtained by impedance measurements. The GTPs with the tri(ethylene glycol) spacer and ethyl‐ and n‐butyl‐imidazolium units afford the highest anhydrous conductivity of 1.5 × 10?5 S cm?1 at 30 °C. Based on electrode polarization (EP) analysis, we calculate the conducting ion (carrier) concentration and mobility. We discuss the effect of the spacer and N‐alkyl tail structures on the ionic conductivity using the data obtained by EP analysis and X‐ray diffraction. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2896–2906  相似文献   

4.
Hybrid complexes based on a D‐π‐A type dye p‐aminostyryl‐pyridinum cation and a lanthanide(III) complex anion were synthesized by ionic exchange reaction. Different alkyl‐substituted amino groups were used as electron donors in organic dye cations. The synthesized complexes were characterized by elemental analysis. In addition, the structural features of them were studied by single‐crystal X‐ray diffraction analysis. Their optical properties were systematically investigated by absorption and fluorescence spectroscopy.  相似文献   

5.
Palladium‐catalyzed direct arylation polycondensation afforded a bithiazole‐based homopolymer and donor–acceptor (D–A)‐type copolymers where the bithiazole unit served as an acceptor unit. The results of polymerization strongly depended on the solubility of the polymers; long alkyl chain substituents were required for the formation of high‐molecular‐weight polymers in high yields owing to low solubility of the bithiazole‐based polymers. X‐ray diffraction studies revealed that the obtained polymers were highly crystalline. In particular, a well‐ordered lamellar structure was observed in the D–A‐type copolymer with flexible alkyl chains after thermal annealing, presumably owing to the combination of interchain interactions between the bithiazole units and the electrostatic D–A interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1396–1402  相似文献   

6.
The phase behaviour of binary mixtures of ionic surfactants (1‐alkyl‐3‐imidazolium chloride, CnmimCl with n=14, 16 and 18) and imidazolium‐based ionic liquids (1‐alkyl‐3‐methylimidazolium tetrachloroferrate, CnmimFeCl4, with n=2 and 4) over a broad temperature range and the complete range of compositions is described. By using many complementary methods including differential scanning calorimetry (DSC), polarised microscopy, small‐angle neutron and X‐ray scattering (SANS/SAXS), and surface tension, the ability of this model system to support self‐assembly is described quantitatively and this behaviour is compared with common water systems. The existence of micelles swollen by the solvent can be deduced from SANS experiments and represent a possible model for aggregates, which has barely been considered for ionic‐liquid systems until now, and can be ascribed to the rather low solvophobicity of the surfactants. Our investigation shows that, in general, CnmimCl is a rather weak amphiphile in these ionic liquids. The amphiphilic strength increases systematically with the length of the alkyl chain, as seen from the phase behaviour, the critical micelle concentration, and also the level of definition of the aggregates formed.  相似文献   

7.
The effect of alkyl groups on the polycondensation of aromatic diamines and quinones to form poly(quinone imine)s was investigated. Models were synthesized under standard conditions: 1 equiv of quinone was reacted with 2 equiv of aniline in the presence of titanium tetrachloride and 1,4‐diazabicyclo[2.2.2]octane. Only modest yields of diimines were obtained when alkyl substituents were introduced. Likewise, alkyl substituents were harmful in the polycondensation of both anthraquinones and benzoquinones with aromatic diamines. As for fluorine substituents, model reactions with either 1,5‐difluoroanthraquinone or 1,4‐difluoroanthraquinone with aniline proceeded in high yields. These model compounds for aromatic poly(quinone imine)s were characterized with 1H NMR spectroscopy, 19F NMR spectroscopy, variable‐temperature 1H NMR spectroscopy, and X‐ray crystal structure determination. Polymers of the difluoroanthraquinones with aromatic diamines were obtained in high yields, although not in high molecular weights, and no stereocontrol was found. Both p‐benzoquinones and anthraquinones were used as monomers in these polymerizations, and a fundamental difference in reactivity was observed. With the former, the polymerization behaved as a classical polycondensation and demanded exact reagent equivalence. With the anthraquinones, however, the polymerization proceeded by a condensation chain polymerization and was much more forgiving. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 43–54, 2002  相似文献   

8.
The structural changes of polyethylene (PE) and photografted polyethylene‐g‐poly(hexyl methacrylate) (PE‐g‐PHMA) with the mechanical formation of pinholes were evaluated with differential scanning calorimetry, wide‐angle X‐ray scanning, and small‐angle X‐ray scanning. The crystallinity and the long period of the lamella increased with pricking under extremely high compression stress. The partial transformation of an orthorhombic crystal into a monoclinic one was also detected. The autonomic healing of pinholes in PE and PE‐g‐PHMA was studied in detail. The degree of healing increased with an increase in the grafting ratio of poly(hexyl methacrylate) (PHMA). Three mechanisms for the healing were investigated and related to the molecular motions of PE and PHMA grafted chains, which were evaluated with dynamic mechanical analyses. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1705–1714, 2004  相似文献   

9.
Structural and thermodynamic properties of cellulose solutions in the ionic liquid 1‐ethyl‐3‐methylimidazolium acetate (EMIMAc) and its binary mixtures with N,N‐dimethyl formamide (DMF) are studied by small‐angle X‐ray scattering (SAXS). These measurements indicate molecular dissolution of the cellulose chains without any significant aggregation. The power–law relationships of the evaluated correlation length and osmotic modulus to concentration exhibit exponents of ?0.76 and 2.06 for EMIMAc and ?0.80 and 2.14 for DMF/EMIMAc solvent mixture, respectively. Thus, these solvents can be considered to be good solvents for cellulose. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 888–894  相似文献   

10.
Polypropylene (PP)/organo‐montmorillonite (Org‐MMT) nanocomposites toughened with maleated styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) were prepared via melt compounding. The structure, mechanical properties, and dynamic mechanical properties of PP/SEBS‐g‐MA blends and their nanocomposites were investigated by X‐ray diffraction (XRD), polarizing optical microscopy (POM), tensile, and impact tests. XRD traces showed that Org‐MMT promoted the formation of β‐phase PP. The degree of crystallinity of PP/SEBS‐g‐MA blends and their nanocomposites were determined from the wide angle X‐ray diffraction via profile fitting method. POM experiments revealed that Org‐MMT particles served as nucleating sites, resulting in a decrease of the spherulite size. The essential work of fracture approach was used to evaluate the tensile fracture toughness of the nanocomposites toughened with elastomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3112–3126, 2005  相似文献   

11.
We investigate the morphology, segmental dynamics, and conductivity of 1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate (EMI‐Tf) swollen short side chain perfluorosulfonate ionomer (Aquivion) over a broad uptake range using small angle X‐ray scattering (SAXS), dielectric relaxation spectroscopy, and transient current measurement. The SAXS data indicate that the absorbed EMI‐Tf is mainly bounded in the ionic region of Aquivion. At low uptakes, EMI‐Tf acts as an effective plasticizer lowering the cluster Tg and markedly shifting the segmental relaxation to a high frequency; however, at high uptakes, the additional EMI‐Tf acts like a filler instead. A time–domain model was employed to quantify the conductivity of these membranes containing two mobile ion species, that is, cations and anions. The conductivity of both neat EMI‐Tf and EMI‐Tf swollen membranes exhibits Vogel‐Fulcher‐Tamman relation, revealing different activation parameters for ionic conduction. Furthermore, membranes containing different EMI‐Tf uptakes have similar conductivity over the reduced Tg/T axis and also follow Debye‐Stokes‐Einstein relation. Therefore, despite the abrupt change in conductivity near the critical uptake (29 wt %), both cluster Tg and segmental motion remain the key factors for the ionic conduction in these EMI‐Tf swollen membranes. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1273–1280  相似文献   

12.
The physical properties of well‐defined alternating copolymers poly(methyl methacrylate‐alt‐styrene) and poly(n‐butyl methacrylate‐alt‐styrene), prepared by reversible addition–fragmentation chain transfer polymerization in the presence of Lewis acids, were investigated with differential scanning calorimetry, wide‐angle X‐ray scattering, and dynamic mechanical measurements. The properties were compared with those of random copolymers of the same overall composition and the corresponding homopolymers. Wide‐angle X‐ray scattering data showed that the alternating copolymers possessed a more regular comonomer sequence than the random copolymers. The thermomechanical properties of alternating copolymers and random copolymers were quite similar and typical for amorphous polymers, but in one of the cases studied the glass‐transition temperature for alternating copolymer was remarkably higher than for the random copolymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3440–3446, 2005  相似文献   

13.
An amphiphilic comb‐like copolymer consisting of a poly(vinyl chloride) (PVC) backbone and poly((oxyethylene)9 methacrylate) (POEM) side chains, PVC‐graft‐POEM was synthesized via atom transfer radical polymerization. This comb copolymer was complexed with LiCF3SO3 to form a solid polymer electrolyte. FTIR and FT‐Raman spectroscopy indicate that lithium salts are dissolved in the ion conducting POEM domains of microphase‐separated graft copolymer up to 10 wt % of salt concentration. Microphase‐separated structure of the materials and the selective interaction of lithium ions with POEM domains were revealed by transmission electron microscopy, wide angle X‐ray scattering, and differential scanning calorimetry. The maximum ionic conductivity of 4.4 × 10?5 S/cm at room temperature was achieved at 10 wt % of salt concentration, above which salts are present as less mobile species such as ion pairs and higher order ionic aggregates, as characterized by FT‐Raman spectroscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1443–1451, 2009  相似文献   

14.
A variety of long alkyl acetylenic compounds was synthesized and polymerized by using Rh(I) catalysts. Particularly, the monomer having a terminal hydroxyl group was converted into the high molecular weight of polymer in good conversion, which was soluble in THF, DMSO, and DMF. The high stereoregularity (cis) in the main chain was confirmed by 1H‐NMR in DMSO‐d6 and the rod‐like structure by wide‐angle X‐ray diffraction. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3419–3427, 2000  相似文献   

15.
The hydrophobic ionic liquid 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was successfully used as solvent in group transfer polymerization of traditional methacrylates (methyl methacrylate, n‐butyl methacrylate, and benzyl methacrylate) and of ionic liquid methacrylates (ILMAs). This demonstrates that this ionic liquid makes reaction conditions, which do not require the use of ultra‐dried solvents. The ILMAs were N‐[2‐(methacryloyloxy)ethyl]‐N,N‐dimethyl‐N‐alkylammonium bis(trifluoromethylsulfonyl)imides bearing methyl, ethyl, propyl, butyl, or hexyl substituents. Increasing size of the alkyl substituent at the cation results in decreasing glass transition temperature in case of both ionic liquid methacrylates and polymers derived of them. Furthermore, the glass transition temperature is significantly higher for these polymers compared with the ionic liquid methacrylates, and the effect of glass transition temperature reduction with increasing size of the alkyl substituent is stronger for the polymers. A mechanism was proposed explaining the catalytic function of the ionic liquid used as solvent for polymerization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2849–2859  相似文献   

16.
Mechanism and curing kinetics of bisphenol A epoxy resin–iso‐methyltetrahydrophthalic anhydride compositions using quaternary phosphonium salts as accelerators were investigated by differential scanning calorimetry (DSC) and electrospray mass‐spectrometry (ESI‐MS). The DSC method was applied to investigate curing kinetics and apparent activation energy values for the overall curing process. The DSC results showed that some of the phosphonium salts lead to a lower activation energy, that means they are more effective accelerators for the curing of epoxy–anhydride systems. The mechanism of curing was studied by ESI‐MS using the model reaction of epichlorohydrin (E) with phthalic anhydride (PA) in the presence of phosphonium salts or 2‐methylimidazole. Products containing the alkyl moiety of the phosphonium salt in form of alkyl esters could be identified. This suggests that the phosphonium salts activate the anhydride by electrophilic attack. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1088–1097  相似文献   

17.
A series of 2‐(4‐n‐alkylphenyl)indenes (3) with different alkyl substituents (CH3 to C10H21) were synthesized and systematically characterized using differential scanning calorimetry, polarizing optical microscopy and X‐ray diffraction compared with 2‐phenylindene (3a). Depending on the alkyl chain length, highly ordered crystal‐smectic E mesophases were observed and confirmed by X‐ray diffraction for the derivatives 3h–3k with heptyl to decyl chains (n = 6?9). For 3f with a pentyl side chain (n = 4), an X‐ray crystal structure analysis was carried out.  相似文献   

18.
The presence of a main‐chain correlation distance (dII) in the poly(di‐n‐alkyl itaconate)s was confirmed with small‐angle X‐ray scattering/wide‐angle X‐ray scattering measurements taken over the temperature range of 293–478 K. Data for a series of alkyl acrylate polymers were also obtained for comparison. The intensity of the itaconate dII peak was significant and indicated a greater level of nanophase formation than in analogous systems. In the lower members of the series, nanophase formation appeared to be further enhanced in the temperature range above the glass‐transition temperature (Tg). This was ascribed to the rapidly increasing main‐chain mobility in this region. Macroscopically phase‐separated itaconate blends displayed the individual dII nanospacings of each homopolymer component. Copolymers, on the other hand, showed more interesting behavior. Poly(methyl‐co‐di‐n‐butyl itaconate) followed an average behavior in which the dII spacing and Tg changed progressively with the comonomer content. In contrast, the side‐chain pairing in poly(methyl‐co‐di‐n‐octyl itaconate) generated dII spacings characteristic of separate methyl and octyl nanodomains. The observation of the dioctyl nanodomains, along with the dioctyl side‐chain lower Tg relaxation event, confirmed the concept of independent side‐chain‐domain relaxation in these polymers. The temperature behavior of the poly(methyl‐co‐di‐n‐octyl itaconate) small‐angle X‐ray scattering profiles and scattering correlation lengths indicated that the two nanodomains were not completely structurally independent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4000–4016, 2004  相似文献   

19.
Dynamic mechanical properties of styrene‐based ionomers containing varying amounts of either 15‐crown‐5 ether (CE) or pentaethylene glycol (PG) are compared with those of ionomers of varying degree of neutralization (ND). The cluster Tg (Tg,c) and ionic modulus of the ionomers decrease with increasing amount of CE or PG or decreasing ND. Thus, we propose that the CE binds Na+ strongly to form a large‐sized complex. Thus, the electrostatic interactions between charges decrease, leading to lower Tg,c. For the PG‐containing ionomers, the PG acts as polar plasticizer, further lowing the Tg,c. In the case of the underneutralized ionomers, the Tg,c is reduced by the existence of both relatively weak hydrogen bonds between carboxylic acid groups and relatively strong ionic bonds between ion pairs in the multiplets. The small‐angle X‐ray scattering results are also supportive of the above interpretations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1358–1367  相似文献   

20.
In this article, we report the synthesis and characterization of a new end‐on side‐chain liquid crystalline polymer (SCLCP), poly[4‐(4′‐alkoxyphenyloxymethylene)styrene] [denoted as Poly(n‐POMS), where n is the carbon number of the alkyl tail, n = 2, 4, 6, 8, 12, 16], with the flexible rod‐like mesogenic side‐chain directly attached to the polymer backbone without flexible spacer. The polymer was obtained by using free radical polymerization. The chemical structures of Poly(n‐POMS) and the corresponding monomer were characterized using various techniques with satisfactory analysis data. A combination analysis of differential scanning calorimetry, polarized light microscopy, small angle X‐ray scattering, and wide‐angle X‐ray diffraction has been conducted to investigate the phase behavior of Poly(n‐POMS). Poly(2‐POMS), Poly(4‐POMS), and Poly(6‐POMS) are amorphous. Poly(8‐POMS) develops partially into the liquid crystal phase, and Poly(12‐POMS) and Poly(16‐POMS) self‐assembly into the smectic A (SmA) phase. Upon increasing temperature, the phase transition of Poly(16‐POMS) follows the sequence of SmA1 ? SmA2 ? isotropic (I), which may be attributed to the conformation isomerization of the flexible rod‐like mesogens. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号